Search results
Results From The WOW.Com Content Network
As in the case of curves in two dimensions, the curvature of a regular space curve C in three dimensions (and higher) is the magnitude of the acceleration of a particle moving with unit speed along a curve. Thus if γ(s) is the arc-length parametrization of C then the unit tangent vector T(s) is given by
Developing the equation for , and grouping the terms in and , we obtain ˙ + ˙ = ¨ + ¨ = ˙ + ˙ Denoting =, the first equation means that is orthogonal to the unit tangent vector at : = The second relation means that = where = = ˙ + ˙ [¨ ¨] is the curvature vector.
The formulas are named after the two French mathematicians who independently discovered them: Jean Frédéric Frenet, in his thesis of 1847, and Joseph Alfred Serret, in 1851. Vector notation and linear algebra currently used to write these formulas were not yet available at the time of their discovery.
The product k 1 k 2 of the two principal curvatures is the Gaussian curvature, K, and the average (k 1 + k 2)/2 is the mean curvature, H. If at least one of the principal curvatures is zero at every point, then the Gaussian curvature will be 0 and the surface is a developable surface. For a minimal surface, the mean curvature is zero at every ...
Radius of curvature and center of curvature. In differential geometry, the radius of curvature, R, is the reciprocal of the curvature. For a curve, it equals the radius of the circular arc which best approximates the curve at that point. For surfaces, the radius of curvature is the radius of a circle that best fits a normal section or ...
The total curvature of a closed curve is always an integer multiple of 2 π, where N is called the index of the curve or turning number – it is the winding number of the unit tangent vector about the origin, or equivalently the degree of the map to the unit circle assigning to each point of the curve, the unit velocity vector at that point.
Animation of the torsion and the corresponding rotation of the binormal vector. Let r be a space curve parametrized by arc length s and with the unit tangent vector T.If the curvature κ of r at a certain point is not zero then the principal normal vector and the binormal vector at that point are the unit vectors
The Berry curvature per solid angle is given by ¯ = / = /. In this case, the Berry phase corresponding to any given path on the unit sphere S 2 {\displaystyle {\mathcal {S}}^{2}} in magnetic-field space is just half the solid angle subtended by the path.