Search results
Results From The WOW.Com Content Network
In probability theory, an event is a subset of outcomes of an experiment (a subset of the sample space) to which a probability is assigned. [1] A single outcome may be an element of many different events, [2] and different events in an experiment are usually not equally likely, since they may include very different groups of outcomes. [3]
In probability theory, an experiment or trial (see below) is any procedure that can be infinitely repeated and has a well-defined set of possible outcomes, known as the sample space. [1] An experiment is said to be random if it has more than one possible outcome, and deterministic if it has only one.
The probability of the event that the sum + is five is , since four of the thirty-six equally likely pairs of outcomes sum to five. If the sample space was all of the possible sums obtained from rolling two six-sided dice, the above formula can still be applied because the dice rolls are fair, but the number of outcomes in a given event will vary.
Probability theory or probability calculus is the branch of mathematics concerned with probability. Although there are several different probability interpretations , probability theory treats the concept in a rigorous mathematical manner by expressing it through a set of axioms .
For example, the probability of the union of the mutually exclusive events and in the random experiment of one coin toss, (), is the sum of probability for and the probability for , () + (). Second, the probability of the sample space Ω {\displaystyle \Omega } must be equal to 1 (which accounts for the fact that, given an execution of the ...
It follows from the law of large numbers that the empirical probability of success in a series of Bernoulli trials will converge to the theoretical probability. For a Bernoulli random variable , the expected value is the theoretical probability of success, and the average of n such variables (assuming they are independent and identically ...
Independence is a fundamental notion in probability theory, as in statistics and the theory of stochastic processes.Two events are independent, statistically independent, or stochastically independent [1] if, informally speaking, the occurrence of one does not affect the probability of occurrence of the other or, equivalently, does not affect the odds.
The event that contains all possible outcomes of an experiment is its sample space. A single outcome can be a part of many different events. [4] Typically, when the sample space is finite, any subset of the sample space is an event (that is, all elements of the power set of the sample space are defined as