Search results
Results From The WOW.Com Content Network
Local search is an anytime algorithm; it can return a valid solution even if it's interrupted at any time after finding the first valid solution. Local search is typically an approximation or incomplete algorithm because the search may stop even if the current best solution found is not optimal. This can happen even if termination happens ...
In mathematical optimization and computer science, heuristic (from Greek εὑρίσκω "I find, discover" [1]) is a technique designed for problem solving more quickly when classic methods are too slow for finding an exact or approximate solution, or when classic methods fail to find any exact solution in a search space.
It is a direct search method (based on function comparison) and is often applied to nonlinear optimization problems for which derivatives may not be known. However, the Nelder–Mead technique is a heuristic search method that can converge to non-stationary points [1] on problems that can be solved by alternative methods. [2]
Variable neighborhood search (VNS), [1] proposed by Mladenović & Hansen in 1997, [2] is a metaheuristic method for solving a set of combinatorial optimization and global optimization problems. It explores distant neighborhoods of the current incumbent solution, and moves from there to a new one if and only if an improvement was made.
The algorithm works by iteratively assigning free variables, and when the algorithm encounters a bad assignment, then it backtracks to a previous iteration and chooses a different assignment of variables. It relies on a Branching Heuristic to pick the next free variable assignment; the branching algorithm effectively makes choosing the variable ...
A search algorithm is said to be admissible if it is guaranteed to return an optimal solution. If the heuristic function used by A* is admissible, then A* is admissible. An intuitive "proof" of this is as follows: Call a node closed if it has been visited and is not in the open set.
Because a constraint satisfaction problem can be interpreted as a local search problem when all the variables have an assigned value (called a complete state), the min conflicts algorithm can be seen as a repair heuristic [2] that chooses the state with the minimum number of conflicts.
Gigerenzer & Gaissmaier (2011) state that sub-sets of strategy include heuristics, regression analysis, and Bayesian inference. [14]A heuristic is a strategy that ignores part of the information, with the goal of making decisions more quickly, frugally, and/or accurately than more complex methods (Gigerenzer and Gaissmaier [2011], p. 454; see also Todd et al. [2012], p. 7).