Search results
Results From The WOW.Com Content Network
β-Glucocerebrosidase (also called acid β-glucosidase, D-glucosyl-N-acylsphingosine glucohydrolase, or GCase) is an enzyme with glucosylceramidase activity (EC 3.2.1.45) that cleaves by hydrolysis the β-glycosidic linkage of the chemical glucocerebroside, an intermediate in glycolipid metabolism that is abundant in cell membranes ...
The following is a list of genetic disorders and if known, type of mutation and for the chromosome involved. Although the parlance "disease-causing gene" is common, it is the occurrence of an abnormality in the parents that causes the impairment to develop within the child. There are over 6,000 known genetic disorders in humans.
The enzyme is a 55.6-kilodalton, 497-amino acid-long protein that catalyses the breakdown of glucocerebroside, a cell membrane constituent of red and white blood cells. In Gaucher disease, the enzyme is unable to function correctly and glucocerebroside accumulates.
Segregating sites include conservative, semi-conservative and non-conservative mutations. The proportion of segregating sites within a gene is an important statistic in population genetics since it can be used to estimate mutation rate assuming no selection. For example it is used to calculate the Tajima's D neutral evolution statistic.
This is the most common single nucleotide mutation. In DNA, this reaction, if detected prior to passage of the replication fork, can be corrected by the enzyme thymine-DNA glycosylase, which removes the thymine base in a G/T mismatch. This leaves an abasic site that is repaired by AP endonucleases and polymerase, as with uracil-DNA glycosylase. [2]
This study showcases the intricacy of genetic architecture by providing an example of many different SNPs and mutations working together, each with a varying effect, to generate a given phenotype. Other studies regarding genetic architecture are many and varied, but most use similar types of analyses to provide specific information regarding ...
Where k is the length of a DNA sequence and is the probability a mutation will occur at a site. [5] Watterson developed an estimator for mutation rate that incorporates the number of segregating sites (Watterson's estimator). [6] One way to think of the ISM is in how it applies to genome evolution.
The 16 possible mutation types of the substitution class C>A are shown as an example. Once the mutation catalog (e.g. counts for each of the 96 mutation types) of a tumor is obtained, there are two approaches to decipher the contributions of different mutational signatures to tumor genomic landscape: