Search results
Results From The WOW.Com Content Network
Within the branch of materials science known as material failure theory, the Goodman relation (also called a Goodman diagram, a Goodman-Haigh diagram, a Haigh diagram or a Haigh-Soderberg diagram) is an equation used to quantify the interaction of mean and alternating stresses on the fatigue life of a material. [1]
For the plane stress case, the orientation of the plane may be specified by an angle in the plane, and the stresses and strains acting on this plane may be computed via Mohr's circle. For the general 3D case, the orientation may be specified via a unit normal vector of the plane, and the associated stresses strains may be computed via a tensor ...
Parts stress modelling is a method in engineering and especially electronics to find an expected value for the rate of failure of the mechanical and electronic components of a system. It is based upon the idea that the more components that there are in the system, and the greater stress that they undergo in operation, the more often they will fail.
Stress analysis can be performed experimentally by applying forces to a test element or structure and then determining the resulting stress using sensors. In this case the process would more properly be known as testing (destructive or non-destructive). Experimental methods may be used in cases where mathematical approaches are cumbersome or ...
The algebraic stress model arises in computational fluid dynamics. Two main approaches can be undertaken. Two main approaches can be undertaken. In the first, the transport of the turbulent stresses is assumed proportional to the turbulent kinetic energy; while in the second, convective and diffusive effects are assumed to be negligible.
In these models, the eddy-viscosity hypothesis is avoided and the individual components of the Reynolds stress tensor are directly computed. These models use the exact Reynolds stress transport equation for their formulation. They account for the directional effects of the Reynolds stresses and the complex interactions in turbulent flows.
The Reynolds stress equation model (RSM), also referred to as second moment closure model, [12] is the most complete classical turbulence modelling approach. Popular eddy-viscosity based models like the k –ε ( k –epsilon) model and the k –ω ( k –omega) models have significant shortcomings in complex engineering flows.
The model's implications for what the data should look like for a specific set of coefficient values depends on: a) the coefficients' locations in the model (e.g. which variables are connected/disconnected), b) the nature of the connections between the variables (covariances or effects; with effects often assumed to be linear), c) the nature of ...