Search results
Results From The WOW.Com Content Network
Hydrogen peroxide is a chemical compound with the formula H 2 O 2. In its pure form, it is a very pale blue [ 5 ] liquid that is slightly more viscous than water . It is used as an oxidizer , bleaching agent, and antiseptic , usually as a dilute solution (3%–6% by weight) in water for consumer use and in higher concentrations for industrial use.
A typical mixture is 3 parts of concentrated sulfuric acid and 1 part of 30 wt. % hydrogen peroxide solution; [1] other protocols may use a 4:1 or even 7:1 mixture. A closely related mixture, sometimes called "base piranha", is a 5:1:1 mixture of water, ammonia solution (NH 4 OH, or NH 3 (aq)), and 30% hydrogen peroxide.
Hydrogen peroxide works best as a propellant in extremely high concentrations (roughly over 70%). Although any concentration of peroxide will generate some hot gas (oxygen plus some steam), at concentrations above approximately 67%, the heat of decomposing hydrogen peroxide becomes large enough to completely vaporize all the liquid at standard pressure.
In biology, the unit "%" is sometimes (incorrectly) used to denote mass concentration, also called mass/volume percentage. A solution with 1 g of solute dissolved in a final volume of 100 mL of solution would be labeled as "1%" or "1% m/v" (mass/volume).
There is no simple way to calculate from , since the conversion between concentration and molality involves all solutes of a solution. For a solution with a total of n {\displaystyle n} solutes with indices i = 1 , … , n {\displaystyle i=1,\ldots ,n} , the conversion is:
The Henderson–Hasselbalch equation can be used to estimate the pH of a buffer solution by approximating the actual concentration ratio as the ratio of the analytical concentrations of the acid and of a salt, MA. The equation can also be applied to bases by specifying the protonated form of the base as the acid.
Elephant's toothpaste is a foamy substance caused by the quick decomposition of hydrogen peroxide (H 2 O 2) using potassium iodide (KI) or yeast and warm water as a catalyst. [1] How rapidly the reaction proceeds will depend on the concentration of hydrogen peroxide. [2] [3] [4]
Many industrial peroxides are produced using hydrogen peroxide. Reactions with aldehydes and ketones yield a series of compounds depending on conditions. Specific reactions include addition of hydrogen peroxide across the C=O double bond: R 2 C=O + H 2 O 2 → R 2 C(OH)OOH. In some cases, these hydroperoxides convert to give cyclic diperoxides: