Search results
Results From The WOW.Com Content Network
Thylakoids consist of a thylakoid membrane surrounding a thylakoid lumen. Chloroplast thylakoids frequently form stacks of disks referred to as grana (singular: granum). Grana are connected by intergranal or stromal thylakoids, which join granum stacks together as a single functional compartment.
Chloroplasts, containing thylakoids, visible in the cells of Rosulabryum capillare, a type of moss. A chloroplast (/ ˈ k l ɔːr ə ˌ p l æ s t,-p l ɑː s t /) [1] [2] is a type of organelle known as a plastid that conducts photosynthesis mostly in plant and algal cells.
The structure and function of cytochrome b 6 f (in chloroplasts) is very similar to cytochrome bc 1 (Complex III in mitochondria). Both are transmembrane structures that remove electrons from a mobile, lipid-soluble electron carrier (plastoquinone in chloroplasts; ubiquinone in mitochondria) and transfer them to a mobile, water-soluble electron ...
Within the envelope membranes, in the region called the stroma, there is a system of interconnecting flattened membrane compartments, called the thylakoids.The thylakoid membrane is quite similar in lipid composition to the inner envelope membrane, containing 78% galactolipids, 15.5% phospholipids and 6.5% sulfolipids in spinach chloroplasts. [3]
Chloroplasts are characterized by a system of membranes embedded in a hydrophobic proteinaceous matrix, or stroma. The basic unit of the membrane system is a flattened single vesicle called the thylakoid; thylakoids stack into grana. All the thylakoids of a granum are connected with each other, and the grana are connected by intergranal ...
Two families of reaction centers in photosystems can be distinguished: type I reaction centers (such as photosystem I in chloroplasts and in green-sulfur bacteria) and type II reaction centers (such as photosystem II in chloroplasts and in non-sulfur purple bacteria). The two photosystems originated from a common ancestor, but have since ...
Chlorophyll molecules are arranged in and around photosystems that are embedded in the thylakoid membranes of chloroplasts. [17] In these complexes, chlorophyll serves three functions: The function of the vast majority of chlorophyll (up to several hundred molecules per photosystem) is to absorb light.
The chloroplasts of the bundle sheath cells convert this CO 2 into carbohydrates by the conventional C 3 pathway. There is large variability in the biochemical features of C4 assimilation, and it is generally grouped in three subtypes, differentiated by the main enzyme used for decarboxylation ( NADP-malic enzyme , NADP-ME; NAD-malic enzyme ...