Search results
Results From The WOW.Com Content Network
An antenna mast with four collinear directional arrays. In telecommunications, a collinear (or co-linear) antenna array is an array of dipole antennas mounted in such a manner that the corresponding elements of each antenna are parallel and aligned, that is they are located along a common line or axis.
Collinear dipole array on repeater for radio station JOHG-FM on Mt. Shibisan, Kagoshima, Japan. In telecommunications, a collinear antenna array (sometimes spelled colinear antenna array) is an array of dipole or quarter-wave antennas mounted in such a manner that the corresponding elements of each antenna are parallel and collinear; that is, they are located along a common axis.
The lines in any parallel class form a partition the points of the affine plane. Each of the n + 1 lines that pass through a single point lies in a different parallel class. The parallel class structure of an affine plane of order n may be used to construct a set of n − 1 mutually orthogonal latin squares. Only the incidence relations are ...
In physics, Lami's theorem is an equation relating the magnitudes of three coplanar, concurrent and non-collinear vectors, which keeps an object in static equilibrium, with the angles directly opposite to the corresponding vectors.
(If one of the four points is the line's point at infinity, then the two distances involving that point are dropped from the formula.) The point D is the harmonic conjugate of C with respect to A and B precisely if the cross-ratio of the quadruple is −1 , called the harmonic ratio .
This form may be more useful when two vectors defining a plane are involved. An example in physics is the Thomas precession which includes the rotation given by Rodrigues' formula, in terms of two non-collinear boost velocities, and the axis of rotation is perpendicular to their plane.
This happens if and only if the triangle vertices aren't collinear and the ray isn't parallel to the plane. The algorithm can use Cramer's Rule to find the t {\displaystyle t} , u {\displaystyle u} , and v {\displaystyle v} values for an intersection, and if it lies within the triangle, the exact coordinates of the intersection can be found by ...
Figure 1: Parallelogram construction for adding vectors. This construction has the same result as moving F 2 so its tail coincides with the head of F 1, and taking the net force as the vector joining the tail of F 1 to the head of F 2. This procedure can be repeated to add F 3 to the resultant F 1 + F 2, and so forth.