When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Logarithmic differentiation - Wikipedia

    en.wikipedia.org/wiki/Logarithmic_differentiation

    It can also be useful when applied to functions raised to the power of variables or functions. Logarithmic differentiation relies on the chain rule as well as properties of logarithms (in particular, the natural logarithm, or the logarithm to the base e) to transform products into sums and divisions into subtractions.

  3. Logarithmic derivative - Wikipedia

    en.wikipedia.org/wiki/Logarithmic_derivative

    Generalising in another direction, the logarithmic derivative of a power (with constant real exponent) is the product of the exponent and the logarithmic derivative of the base: ′ = ′ = ′, just as the logarithm of a power is the product of the exponent and the logarithm of the base.

  4. List of logarithmic identities - Wikipedia

    en.wikipedia.org/wiki/List_of_logarithmic_identities

    For example, two numbers can be multiplied just by using a logarithm table and adding. These are often known as logarithmic properties, which are documented in the table below. [2] The first three operations below assume that x = b c and/or y = b d, so that log b (x) = c and log b (y) = d. Derivations also use the log definitions x = b log b (x ...

  5. Logarithm - Wikipedia

    en.wikipedia.org/wiki/Logarithm

    For example, the logarithm of 1000 to base 10 is 3, because 1000 is 10 to the 3 rd power: 1000 = 10 3 = 10 × 10 × 10. More generally, if x = b y, then y is the logarithm of x to base b, written log b x, so log 10 1000 = 3. As a single-variable function, the logarithm to base b is the inverse of exponentiation with base b.

  6. Common logarithm - Wikipedia

    en.wikipedia.org/wiki/Common_logarithm

    The logarithm keys (log for base-10 and ln for base-e) on a typical scientific calculator. The advent of hand-held calculators largely eliminated the use of common logarithms as an aid to computation. The numerical value for logarithm to the base 10 can be calculated with the following identities: [5]

  7. Natural logarithm - Wikipedia

    en.wikipedia.org/wiki/Natural_logarithm

    The natural logarithm of x is generally written as ln x, log e x, or sometimes, if the base e is implicit, simply log x. [2] [3] Parentheses are sometimes added for clarity, giving ln(x), log e (x), or log(x). This is done particularly when the argument to the logarithm is not a single symbol, so as to prevent ambiguity.

  8. Differentiation rules - Wikipedia

    en.wikipedia.org/wiki/Differentiation_rules

    The logarithmic derivative is another way of stating the rule for differentiating the logarithm of a function (using the chain rule): (⁡) ′ = ′, wherever is positive. Logarithmic differentiation is a technique which uses logarithms and its differentiation rules to simplify certain expressions before actually applying the derivative.

  9. Complex logarithm - Wikipedia

    en.wikipedia.org/wiki/Complex_logarithm

    The complex logarithm is needed to define exponentiation in which the base is a complex number. Namely, if a {\displaystyle a} and b {\displaystyle b} are complex numbers with a ≠ 0 {\displaystyle a\not =0} , one can use the principal value to define a b = e b Log ⁡ a {\displaystyle a^{b}=e^{b\operatorname {Log} a}} .