When.com Web Search

  1. Ads

    related to: definition of distributive property for third graders math games

Search results

  1. Results From The WOW.Com Content Network
  2. Distributive property - Wikipedia

    en.wikipedia.org/wiki/Distributive_property

    In mathematics, the distributive property of binary operations is a generalization of the distributive law, which asserts that the equality (+) = + is always true in elementary algebra. For example, in elementary arithmetic , one has 2 ⋅ ( 1 + 3 ) = ( 2 ⋅ 1 ) + ( 2 ⋅ 3 ) . {\displaystyle 2\cdot (1+3)=(2\cdot 1)+(2\cdot 3).}

  3. Elementary algebra - Wikipedia

    en.wikipedia.org/wiki/Elementary_algebra

    By definition, equality is an equivalence relation, meaning it is reflexive (i.e. =), symmetric (i.e. if = then =), and transitive (i.e. if = and = then =). [33] It also satisfies the important property that if two symbols are used for equal things, then one symbol can be substituted for the other in any true statement about the first and the ...

  4. Non-associative algebra - Wikipedia

    en.wikipedia.org/wiki/Non-associative_algebra

    A non-associative algebra [1] (or distributive algebra) is an algebra over a field where the binary multiplication operation is not assumed to be associative.That is, an algebraic structure A is a non-associative algebra over a field K if it is a vector space over K and is equipped with a K-bilinear binary multiplication operation A × A → A which may or may not be associative.

  5. FOIL method - Wikipedia

    en.wikipedia.org/wiki/FOIL_method

    The FOIL method is a special case of a more general method for multiplying algebraic expressions using the distributive law. The word FOIL was originally intended solely as a mnemonic for high-school students learning algebra. The term appears in William Betz's 1929 text Algebra for Today, where he states: [2]

  6. Ring (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Ring_(mathematics)

    In mathematics, rings are algebraic structures that generalize fields: multiplication need not be commutative and multiplicative inverses need not exist. Informally, a ring is a set equipped with two binary operations satisfying properties analogous to those of addition and multiplication of integers.

  7. Addition - Wikipedia

    en.wikipedia.org/wiki/Addition

    The integer zero is a special third case, being neither positive nor negative. The corresponding definition of addition must proceed by cases: For an integer n, let |n| be its absolute value. Let a and b be integers. If either a or b is zero, treat it as an identity. If a and b are both positive, define a + b = |a| + |b|.