When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. List of Laplace transforms - Wikipedia

    en.wikipedia.org/wiki/List_of_Laplace_transforms

    The following functions and variables are used in the table below: δ represents the Dirac delta function. u(t) represents the Heaviside step function. Literature may refer to this by other notation, including () or (). Γ(z) represents the Gamma function. γ is the Euler–Mascheroni constant. t is a real number.

  3. Fourier transform - Wikipedia

    en.wikipedia.org/wiki/Fourier_transform

    Therefore, the Fourier transform goes from one space of functions to a different space of functions: functions which have a different domain of definition. In general, ξ {\displaystyle \xi } must always be taken to be a linear form on the space of its domain, which is to say that the second real line is the dual space of the first real line.

  4. List of transforms - Wikipedia

    en.wikipedia.org/wiki/List_of_transforms

    Affine transformation (Euclidean geometry) Bäcklund transform; Bilinear transform; Box–Muller transform; Burrows–Wheeler transform (data compression) Chirplet transform; Distance transform; Fractal transform; Gelfand transform; Hadamard transform; Hough transform (digital image processing) Inverse scattering transform; Legendre ...

  5. Fourier series - Wikipedia

    en.wikipedia.org/wiki/Fourier_series

    4 Table of basic transformation rules. ... Well-behaved functions, for example smooth functions, have Fourier series that converge to the original function.

  6. Laplace transform - Wikipedia

    en.wikipedia.org/wiki/Laplace_transform

    The unilateral Laplace transform takes as input a function whose time domain is the non-negative reals, which is why all of the time domain functions in the table below are multiples of the Heaviside step function, u(t). The entries of the table that involve a time delay τ are required to be causal (meaning that τ > 0).

  7. Transform theory - Wikipedia

    en.wikipedia.org/wiki/Transform_theory

    Main examples of transforms that are both well known and widely applicable include integral transforms [1] such as the Fourier transform, the fractional Fourier Transform, [2] the Laplace transform, and linear canonical transformations. [3] These transformations are used in signal processing, optics, and quantum mechanics.

  8. Transformation (function) - Wikipedia

    en.wikipedia.org/wiki/Transformation_(function)

    In mathematics, a transformation, transform, or self-map [1] is a function f, usually with some geometrical underpinning, that maps a set X to itself, i.e. f: X → X. [ 2 ] [ 3 ] [ 4 ] Examples include linear transformations of vector spaces and geometric transformations , which include projective transformations , affine transformations , and ...

  9. Convex conjugate - Wikipedia

    en.wikipedia.org/wiki/Convex_conjugate

    In mathematics and mathematical optimization, the convex conjugate of a function is a generalization of the Legendre transformation which applies to non-convex functions. It is also known as Legendre–Fenchel transformation, Fenchel transformation, or Fenchel conjugate (after Adrien-Marie Legendre and Werner Fenchel).