When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Hexagon - Wikipedia

    en.wikipedia.org/wiki/Hexagon

    A regular hexagon has Schläfli symbol {6} [2] and can also be constructed as a truncated equilateral triangle, t{3}, which alternates two types of edges. A regular hexagon is defined as a hexagon that is both equilateral and equiangular. It is bicentric, meaning that it is both cyclic (has a circumscribed circle) and tangential (has an ...

  3. Curve fitting - Wikipedia

    en.wikipedia.org/wiki/Curve_fitting

    A line will connect any two points, so a first degree polynomial equation is an exact fit through any two points with distinct x coordinates. If the order of the equation is increased to a second degree polynomial, the following results: = + +. This will exactly fit a simple curve to three points.

  4. Brianchon's theorem - Wikipedia

    en.wikipedia.org/wiki/Brianchon's_theorem

    Consider, for example, five tangent lines to a parabola. These may be considered sides of a hexagon whose sixth side is the line at infinity, but there is no line at infinity in the affine plane. In two instances, a line from a (non-existent) vertex to the opposite vertex would be a line parallel to one of the five tangent lines. Brianchon's ...

  5. Pascal's theorem - Wikipedia

    en.wikipedia.org/wiki/Pascal's_theorem

    In projective geometry, Pascal's theorem (also known as the hexagrammum mysticum theorem, Latin for mystical hexagram) states that if six arbitrary points are chosen on a conic (which may be an ellipse, parabola or hyperbola in an appropriate affine plane) and joined by line segments in any order to form a hexagon, then the three pairs of ...

  6. Equiangular lines - Wikipedia

    en.wikipedia.org/wiki/Equiangular_lines

    Computing the maximum number of equiangular lines in n-dimensional Euclidean space is a difficult problem, and unsolved in general, though bounds are known. The maximal number of equiangular lines in 2-dimensional Euclidean space is 3: we can take the lines through opposite vertices of a regular hexagon, each at an angle 120 degrees from the other two.

  7. Ulam spiral - Wikipedia

    en.wikipedia.org/wiki/Ulam_spiral

    This curve asymptotically approaches a horizontal line in the left half of the figure. (In the Ulam spiral, Euler's polynomial forms two diagonal lines, one in the top half of the figure, corresponding to even values of x in the sequence, the other in the bottom half of the figure corresponding to odd values of x in the sequence.)

  8. Arrangement of lines - Wikipedia

    en.wikipedia.org/wiki/Arrangement_of_lines

    The vertices of the arrangement are isolated points belonging to two or more lines, where those lines cross each other. [1] The boundary of a cell is the system of edges that touch it, and the boundary of an edge is the set of vertices that touch it (one vertex for a ray and two for a line segment).

  9. Space diagonal - Wikipedia

    en.wikipedia.org/wiki/Space_diagonal

    A magic square is an arrangement of numbers in a square grid so that the sum of the numbers along every row, column, and diagonal is the same. Similarly, one may define a magic cube to be an arrangement of numbers in a cubical grid so that the sum of the numbers on the four space diagonals must be the same as the sum of the numbers in each row, each column, and each pillar.