When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Neural network - Wikipedia

    en.wikipedia.org/wiki/Neural_network

    A neural network is a group of interconnected units called neurons that send signals to one another. Neurons can be either biological cells or mathematical models. While individual neurons are simple, many of them together in a network can perform complex tasks. There are two main types of neural network.

  3. Neural network (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Neural_network_(machine...

    In machine learning, a neural network (also artificial neural network or neural net, abbreviated ANN or NN) is a model inspired by the structure and function of biological neural networks in animal brains. [1] [2] An ANN consists of connected units or nodes called artificial neurons, which loosely model the neurons in the brain. Artificial ...

  4. Convolutional neural network - Wikipedia

    en.wikipedia.org/wiki/Convolutional_neural_network

    A convolutional neural network (CNN) is a regularized type of feedforward neural network that learns features by itself via filter (or kernel) optimization. This type of deep learning network has been applied to process and make predictions from many different types of data including text, images and audio. [1]

  5. Recurrent neural network - Wikipedia

    en.wikipedia.org/wiki/Recurrent_neural_network

    : neural network parameters. In words, it is a neural network that maps an input into an output , with the hidden vector playing the role of "memory", a partial record of all previous input-output pairs. At each step, it transforms input to an output, and modifies its "memory" to help it to better perform future processing.

  6. Activation function - Wikipedia

    en.wikipedia.org/wiki/Activation_function

    When the activation function is non-linear, then a two-layer neural network can be proven to be a universal function approximator. [6] This is known as the Universal Approximation Theorem. The identity activation function does not satisfy this property.

  7. Machine learning - Wikipedia

    en.wikipedia.org/wiki/Machine_learning

    Artificial neural networks have been used on a variety of tasks, including computer vision, speech recognition, machine translation, social network filtering, playing board and video games and medical diagnosis. Deep learning consists of multiple hidden layers in an artificial neural network. This approach tries to model the way the human brain ...

  8. Mathematics of artificial neural networks - Wikipedia

    en.wikipedia.org/wiki/Mathematics_of_artificial...

    Networks such as the previous one are commonly called feedforward, because their graph is a directed acyclic graph. Networks with cycles are commonly called recurrent. Such networks are commonly depicted in the manner shown at the top of the figure, where is shown as dependent upon itself. However, an implied temporal dependence is not shown.

  9. Feedforward neural network - Wikipedia

    en.wikipedia.org/wiki/Feedforward_neural_network

    A multilayer perceptron (MLP) is a misnomer for a modern feedforward artificial neural network, consisting of fully connected neurons (hence the synonym sometimes used of fully connected network (FCN)), often with a nonlinear kind of activation function, organized in at least three layers, notable for being able to distinguish data that is not ...