When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Faradaic impedance - Wikipedia

    en.wikipedia.org/wiki/Faradaic_impedance

    In electrochemistry, faradaic impedance [1] [2] is the resistance and capacitance acting jointly at the surface of an electrode of an electrochemical cell.The cell may be operating as either a galvanic cell generating an electric current or inversely as an electrolytic cell using an electric current to drive a chemical reaction.

  3. Faraday's laws of electrolysis - Wikipedia

    en.wikipedia.org/wiki/Faraday's_laws_of_electrolysis

    Faraday discovered that when the same amount of electric current is passed through different electrolytes connected in series, the masses of the substances deposited or liberated at the electrodes are directly proportional to their respective chemical equivalent/equivalent weight (E). [3]

  4. Dielectric spectroscopy - Wikipedia

    en.wikipedia.org/wiki/Dielectric_spectroscopy

    Electrochemical impedance spectroscopy can be used to obtain the frequency response of batteries and electrocatalytic systems at relatively high temperatures. [ 34 ] [ 35 ] [ 36 ] Biomedical sensors working in the microwave range relies on dielectric spectroscopy to detect changes in the dielectric properties over a frequency range, such as non ...

  5. Faraday efficiency - Wikipedia

    en.wikipedia.org/wiki/Faraday_efficiency

    [3] [4] Proton exchange membrane fuel cells provide another example of faradaic losses when some of the electrons separated from hydrogen at the anode leak through the membrane and reach the cathode directly instead of passing through the load and performing useful work. Ideally, the electrolyte membrane would be a perfect insulator and prevent ...

  6. Randles–Sevcik equation - Wikipedia

    en.wikipedia.org/wiki/Randles–Sevcik_equation

    D = diffusion coefficient in cm 2 /s; C = concentration in mol/cm 3; ν = scan rate in V/s; R = Gas constant in J K −1 mol −1; T = temperature in K; The constant with a value of 2.69×10 5 has units of C mol −1 V −1/2; For novices in electrochemistry, the predictions of this equation appear counter-intuitive, i.e. that i p increases at ...

  7. Charge transfer coefficient - Wikipedia

    en.wikipedia.org/wiki/Charge_transfer_coefficient

    They appear in the Butler–Volmer equation and related expressions. The symmetry factor and the charge transfer coefficient are dimensionless. [1] According to an IUPAC definition, [2] for a reaction with a single rate-determining step, the charge transfer coefficient for a cathodic reaction (the cathodic transfer coefficient, α c) is defined as:

  8. Randles circuit - Wikipedia

    en.wikipedia.org/wiki/Randles_circuit

    Randles circuit schematic. In electrochemistry, a Randles circuit is an equivalent electrical circuit that consists of an active electrolyte resistance R S in series with the parallel combination of the double-layer capacitance C dl and an impedance (Z w) of a faradaic reaction.

  9. Butler–Volmer equation - Wikipedia

    en.wikipedia.org/wiki/Butler–Volmer_equation

    The upper graph shows the current density as function of the overpotential η . The anodic and cathodic current densities are shown as j a and j c, respectively for α=α a =α c =0.5 and j 0 =1mAcm −2 (close to values for platinum and palladium).