When.com Web Search

  1. Ads

    related to: sum k formula math problems solving

Search results

  1. Results From The WOW.Com Content Network
  2. Basel problem - Wikipedia

    en.wikipedia.org/wiki/Basel_problem

    The Basel problem is a problem in mathematical analysis with relevance to number theory, concerning an infinite sum of inverse squares. It was first posed by Pietro Mengoli in 1650 and solved by Leonhard Euler in 1734, [ 1 ] and read on 5 December 1735 in The Saint Petersburg Academy of Sciences . [ 2 ]

  3. List of mathematical series - Wikipedia

    en.wikipedia.org/wiki/List_of_mathematical_series

    This list of mathematical series contains formulae for finite and infinite sums. It can be used in conjunction with other tools for evaluating sums. Here, is taken to have the value

  4. Summation - Wikipedia

    en.wikipedia.org/wiki/Summation

    In mathematics, summation is the addition of a sequence of numbers, called addends or summands; the result is their sum or total.Beside numbers, other types of values can be summed as well: functions, vectors, matrices, polynomials and, in general, elements of any type of mathematical objects on which an operation denoted "+" is defined.

  5. Binomial coefficient - Wikipedia

    en.wikipedia.org/wiki/Binomial_coefficient

    There are many other combinatorial interpretations of binomial coefficients (counting problems for which the answer is given by a binomial coefficient expression), for instance the number of words formed of n bits (digits 0 or 1) whose sum is k is given by (), while the number of ways to write = + + + where every a i is a nonnegative integer is ...

  6. Stars and bars (combinatorics) - Wikipedia

    en.wikipedia.org/wiki/Stars_and_bars_(combinatorics)

    It can be used to solve a variety of counting problems, such as how many ways there are to put n indistinguishable balls into k distinguishable bins. [4] The solution to this particular problem is given by the binomial coefficient ( n + k − 1 k − 1 ) {\displaystyle {\tbinom {n+k-1}{k-1}}} , which is the number of subsets of size k − 1 ...

  7. Multinomial theorem - Wikipedia

    en.wikipedia.org/wiki/Multinomial_theorem

    The sum is taken over all combinations of nonnegative integer indices k 1 through k m such that the sum of all k i is n. That is, for each term in the expansion, the exponents of the x i must add up to n. [2] [a] In the case m = 2, this statement reduces to that of the binomial theorem. [2]

  8. Lander, Parkin, and Selfridge conjecture - Wikipedia

    en.wikipedia.org/wiki/Lander,_Parkin,_and_Self...

    Fermat's Last Theorem states that for powers greater than 2, the equation a k + b k = c k has no solutions in non-zero integers a, b, c. Extending the number of terms on either or both sides, and allowing for higher powers than 2, led to Leonhard Euler to propose in 1769 that for all integers n and k greater than 1, if the sum of n k th powers ...

  9. Waring's problem - Wikipedia

    en.wikipedia.org/wiki/Waring's_problem

    In number theory, Waring's problem asks whether each natural number k has an associated positive integer s such that every natural number is the sum of at most s natural numbers raised to the power k. For example, every natural number is the sum of at most 4 squares, 9 cubes, or 19 fourth powers.