When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Bernoulli differential equation - Wikipedia

    en.wikipedia.org/.../Bernoulli_differential_equation

    In mathematics, an ordinary differential equation is called a Bernoulli differential equation if it is of the form ′ + = (), where is a real number. Some authors allow any real , [1] [2] whereas others require that not be 0 or 1.

  3. Bernoulli's principle - Wikipedia

    en.wikipedia.org/wiki/Bernoulli's_principle

    If the fluid flow is irrotational, the total pressure is uniform and Bernoulli's principle can be summarized as "total pressure is constant everywhere in the fluid flow". [1]: Equation 3.12 It is reasonable to assume that irrotational flow exists in any situation where a large body of fluid is flowing past a solid body. Examples are aircraft in ...

  4. Standard step method - Wikipedia

    en.wikipedia.org/wiki/Standard_Step_Method

    The STM numerically solves equation 3 through an iterative process. This can be done using the bisection or Newton-Raphson Method, and is essentially solving for total head at a specified location using equations 4 and 5 by varying depth at the specified location. [5] = Equation 4

  5. Flow distribution in manifolds - Wikipedia

    en.wikipedia.org/wiki/Flow_distribution_in_manifolds

    Eq.2b is a fundamental equation for most of discrete models. The equation can be solved by recurrence and iteration method for a manifold. It is clear that Eq.2a is limiting case of Eq.2b when ∆X → 0. Eq.2a is simplified to Eq.1 Bernoulli equation without the potential energy term when β=1 whilst Eq.2 is simplified to Kee's model [6] when β=0

  6. Derivation of the Navier–Stokes equations - Wikipedia

    en.wikipedia.org/wiki/Derivation_of_the_Navier...

    This equation is called the mass continuity equation, or simply the continuity equation. This equation generally accompanies the Navier–Stokes equation. In the case of an incompressible fluid, ⁠ Dρ / Dt ⁠ = 0 (the density following the path of a fluid element is constant) and the equation reduces to:

  7. Dynamic pressure - Wikipedia

    en.wikipedia.org/wiki/Dynamic_pressure

    Dynamic pressure is one of the terms of Bernoulli's equation, which can be derived from the conservation of energy for a fluid in motion. [1] At a stagnation point the dynamic pressure is equal to the difference between the stagnation pressure and the static pressure, so the dynamic pressure in a flow field can be measured at a stagnation point ...

  8. Bernoulli process - Wikipedia

    en.wikipedia.org/wiki/Bernoulli_process

    In probability and statistics, a Bernoulli process (named after Jacob Bernoulli) is a finite or infinite sequence of binary random variables, so it is a discrete-time stochastic process that takes only two values, canonically 0 and 1. The component Bernoulli variables X i are identically distributed and independent. Prosaically, a Bernoulli ...

  9. n-body problem - Wikipedia

    en.wikipedia.org/wiki/N-body_problem

    r = r 2 − r 1 is the vector position of m 2 relative to m 1; α is the Eulerian acceleration ⁠ d 2 r / dt 2 ⁠; η = G(m 1 + m 2). The equation α + ⁠ η / r 3 ⁠ r = 0 is the fundamental differential equation for the two-body problem Bernoulli solved in 1734. Notice for this approach forces have to be determined first, then the ...