Search results
Results From The WOW.Com Content Network
Earth radius (denoted as R 🜨 or R E) is the distance from the center of Earth to a point on or near its surface. Approximating the figure of Earth by an Earth spheroid (an oblate ellipsoid), the radius ranges from a maximum (equatorial radius, denoted a) of nearly 6,378 km (3,963 mi) to a minimum (polar radius, denoted b) of nearly 6,357 km (3,950 mi).
Spherical Earth or Earth's curvature refers to the approximation of the figure of the Earth to a sphere. The concept of a spherical Earth gradually displaced earlier beliefs in a flat Earth during classical antiquity and the Middle Ages .
The curvature of the Earth is evident in the horizon across the image, and the bases of the buildings on the far shore are below that horizon and hidden by the sea. The simplest model for the shape of the entire Earth is a sphere. The Earth's radius is the distance from Earth's center to its surface, about 6,371 km (3,959 mi). While "radius ...
s is along the surface of the Earth, d is the straight line distance, and ~d is the approximate straight line distance assuming h << the radius of the Earth, 6371 km. In the SVG image, hover over a graph to highlight it. If the observer is close to the surface of the Earth, then it is valid to disregard h in the term (2R + h), and the formula ...
The Old Bedford River, photographed from the bridge at Welney, Norfolk (2008); the camera is looking downstream, south-west of the bridge. The Bedford Level experiment was a series of observations carried out along a 6-mile (10 km) length of the Old Bedford River on the Bedford Level of the Cambridgeshire Fens in the United Kingdom during the 19th and early 20th centuries to deny the curvature ...
The slant distance s (chord length) between two points can be reduced to the arc length on the ellipsoid surface S as: [21] = (+) / / where R is evaluated from Earth's azimuthal radius of curvature and h are ellipsoidal heights are each point. The first term on the right-hand side of the equation accounts for the mean elevation and the second ...
A data set which describes the global average of the Earth's surface curvature is called the mean Earth Ellipsoid. It refers to a theoretical coherence between the geographic latitude and the meridional curvature of the geoid. The latter is close to the mean sea level, and therefore an ideal Earth ellipsoid has the same volume as the geoid.
In the 19th century, many astronomers and geodesists were engaged in detailed studies of the Earth's curvature along different meridian arcs. The analyses resulted in a great many model ellipsoids such as Plessis 1817, Airy 1830, Bessel 1841, Everest 1830, and Clarke 1866. [31] A comprehensive list of ellipsoids is given under Earth ellipsoid.