When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Spin states (d electrons) - Wikipedia

    en.wikipedia.org/wiki/Spin_states_(d_electrons)

    Low-spin [Fe(NO 2) 6] 3− crystal field diagram. The Δ splitting of the d orbitals plays an important role in the electron spin state of a coordination complex. Three factors affect Δ: the period (row in periodic table) of the metal ion, the charge of the metal ion, and the field strength of the complex's ligands as described by the spectrochemical series.

  3. Spin crossover - Wikipedia

    en.wikipedia.org/wiki/Spin_crossover

    Spin crossover is sometimes referred to as spin transition or spin equilibrium behavior. The change in spin state usually involves interchange of low spin (LS) and high spin (HS) configuration. [2] Spin crossover is commonly observed with first row transition metal complexes with a d 4 through d 7 electron configuration in an octahedral ligand ...

  4. Ligand field theory - Wikipedia

    en.wikipedia.org/wiki/Ligand_field_theory

    The metal also has six valence orbitals that span these irreducible representations - the s orbital is labeled a 1g, a set of three p-orbitals is labeled t 1u, and the d z 2 and d x 2 −y 2 orbitals are labeled e g. The six σ-bonding molecular orbitals result from the combinations of ligand SALCs with metal orbitals of the same symmetry.

  5. Tanabe–Sugano diagram - Wikipedia

    en.wikipedia.org/wiki/Tanabe–Sugano_diagram

    There is no electron repulsion in a d 1 complex, and the single electron resides in the t 2g orbital ground state. A d 1 octahedral metal complex, such as [Ti(H 2 O) 6] 3+, shows a single absorption band in a UV-vis experiment. [7] The term symbol for d 1 is 2 D, which splits into the 2 T 2g and 2 E g states.

  6. Crystal field theory - Wikipedia

    en.wikipedia.org/wiki/Crystal_field_theory

    Complexes such as this are called "low spin". For example, NO 2 − is a strong-field ligand and produces a large Δ. The octahedral ion [Fe(NO 2) 6] 3−, which has 5 d-electrons, would have the octahedral splitting diagram shown at right with all five electrons in the t 2g level. This low spin state therefore does not follow Hund's rule.

  7. Orgel diagram - Wikipedia

    en.wikipedia.org/wiki/Orgel_diagram

    In an Orgel diagram, the parent term (P, D, or F) in the presence of no ligand field is located in the center of the diagram, with the terms due to that electronic configuration in a ligand field at each side. There are two Orgel diagrams, one for d 1, d 4, d 6, and d 9 configurations and the other with d 2, d 3, d 7, and d 8 configurations.

  8. Spinel group - Wikipedia

    en.wikipedia.org/wiki/Spinel_group

    An example of an inverse spinel is Fe 3 O 4, if the Fe 2+ (A 2+) ions are d 6 high-spin and the Fe 3+ (B 3+) ions are d 5 high-spin. In addition, intermediate cases exist where the cation distribution can be described as (A 1− x B x )[A x ⁄ 2 B 1− x ⁄ 2 ] 2 O 4 , where parentheses () and brackets [] are used to denote tetrahedral and ...

  9. Transition metal chloride complex - Wikipedia

    en.wikipedia.org/wiki/Transition_metal_chloride...

    Due to a smaller crystal field splitting energy, the homoleptic halide complexes of the first transition series are all high spin. Only [CrCl 6 ] 3− is exchange inert. Homoleptic metal halide complexes are known with several stoichiometries, but the main ones are the hexahalometallates and the tetrahalometallates.