Search results
Results From The WOW.Com Content Network
Lattice-based cryptography is the generic term for constructions of cryptographic primitives that involve lattices, either in the construction itself or in the security proof. Lattice-based constructions support important standards of post-quantum cryptography . [ 1 ]
The Goldreich–Goldwasser–Halevi (GGH) lattice-based cryptosystem is a broken asymmetric cryptosystem based on lattices. There is also a GGH signature scheme which hasn't been broken as of 2024. The Goldreich–Goldwasser–Halevi (GGH) cryptosystem makes use of the fact that the closest vector problem can be a hard problem.
In computer science, lattice problems are a class of optimization problems related to mathematical objects called lattices.The conjectured intractability of such problems is central to the construction of secure lattice-based cryptosystems: lattice problems are an example of NP-hard problems which have been shown to be average-case hard, providing a test case for the security of cryptographic ...
NTRU is an open-source public-key cryptosystem that uses lattice-based cryptography to encrypt and decrypt data. It consists of two algorithms: NTRUEncrypt, which is used for encryption, and NTRUSign, which is used for digital signatures.
The Short Integer Solution (SIS) problem is an average case problem that is used in lattice-based cryptography constructions. Lattice-based cryptography began in 1996 from a seminal work by Ajtai [ 1 ] who presented a family of one-way functions based on the SIS problem.
In general terms, ideal lattices are lattices corresponding to ideals in rings of the form [] / for some irreducible polynomial of degree . [1] All of the definitions of ideal lattices from prior work are instances of the following general notion: let be a ring whose additive group is isomorphic to (i.e., it is a free -module of rank), and let be an additive isomorphism mapping to some lattice ...
An early successful application of the LLL algorithm was its use by Andrew Odlyzko and Herman te Riele in disproving Mertens conjecture. [5]The LLL algorithm has found numerous other applications in MIMO detection algorithms [6] and cryptanalysis of public-key encryption schemes: knapsack cryptosystems, RSA with particular settings, NTRUEncrypt, and so forth.
The lattice reduction attack is one of the best known and one of the most practical methods to break the NTRUEncrypt. In a way it can be compared to the factorization of the modulus in RSA. The most used algorithm for the lattice reduction attack is the Lenstra-Lenstra-Lovász algorithm.