Search results
Results From The WOW.Com Content Network
The only divergence for probabilities over a finite alphabet that is both an f-divergence and a Bregman divergence is the Kullback–Leibler divergence. [8] The squared Euclidean divergence is a Bregman divergence (corresponding to the function x 2 {\displaystyle x^{2}} ) but not an f -divergence.
When X n converges in r-th mean to X for r = 2, we say that X n converges in mean square (or in quadratic mean) to X. Convergence in the r-th mean, for r ≥ 1, implies convergence in probability (by Markov's inequality). Furthermore, if r > s ≥ 1, convergence in r-th mean implies convergence in s-th mean. Hence, convergence in mean square ...
Jensen–Shannon divergence; Bhattacharyya distance (despite its name it is not a distance, as it violates the triangle inequality) f-divergence: generalizes several distances and divergences; Discriminability index, specifically the Bayes discriminability index, is a positive-definite symmetric measure of the overlap of two distributions.
This does not look random, but it satisfies the definition of random variable. This is useful because it puts deterministic variables and random variables in the same formalism. The discrete uniform distribution, where all elements of a finite set are equally likely. This is the theoretical distribution model for a balanced coin, an unbiased ...
As an example, consider air as it is heated or cooled. The velocity of the air at each point defines a vector field. While air is heated in a region, it expands in all directions, and thus the velocity field points outward from that region. The divergence of the velocity field in that region would thus have a positive value.
Gerald Appel referred to a "divergence" as the situation where the MACD line does not conform to the price movement, e.g. a price low is not accompanied by a low of the MACD. [3] Thomas Asprey dubbed the difference between the MACD and its signal line the "divergence" series. In practice, definition number 2 above is often preferred. Histogram: [4]
Integral form: by the integral remainder form of Taylor's Theorem, a Bregman divergence can be written as the integral of the Hessian of along the line segment between the Bregman divergence's arguments. Mean as minimizer: A key result about Bregman divergences is that, given a random vector, the mean vector minimizes the expected Bregman ...
While most of the tests deal with the convergence of infinite series, they can also be used to show the convergence or divergence of infinite products. This can be achieved using following theorem: Let { a n } n = 1 ∞ {\displaystyle \left\{a_{n}\right\}_{n=1}^{\infty }} be a sequence of positive numbers.