When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Xenon-135 - Wikipedia

    en.wikipedia.org/wiki/Xenon-135

    Xenon-135 (135 Xe) is an unstable isotope of xenon with a half-life of about 9.2 hours. 135 Xe is a fission product of uranium and it is the most powerful known neutron -absorbing nuclear poison (2 million barns ; [ 1 ] up to 3 million barns [ 1 ] under reactor conditions [ 2 ] ), with a significant effect on nuclear reactor operation.

  3. Isotopes of xenon - Wikipedia

    en.wikipedia.org/wiki/Isotopes_of_xenon

    Xenon-136 is an isotope of xenon that undergoes double beta decay to barium-136 with a very long half-life of 2.11 × 10 21 years, more than 10 orders of magnitude longer than the age of the universe ((13.799 ± 0.021) × 10 9 years). It is being used in the Enriched Xenon Observatory experiment to search for neutrinoless double beta decay.

  4. Iodine pit - Wikipedia

    en.wikipedia.org/wiki/Iodine_pit

    The iodine pit, also called the iodine hole or xenon pit, is a temporary disabling of a nuclear reactor due to buildup of short-lived nuclear poisons in the reactor core. The main isotope responsible is 135 Xe, mainly produced by natural decay of 135 I. 135 I is a weak neutron absorber, while 135 Xe is the strongest

  5. Fission products (by element) - Wikipedia

    en.wikipedia.org/wiki/Fission_products_(by_element)

    Neutron capture inside the reactor transmutes much of the xenon-135 that would otherwise decay to Cs-135. Caesium-137, with a half-life of 30 years, is the main medium-lived fission product, along with Sr-90. Cs-137 is the primary source of penetrating gamma radiation from spent fuel from 10 years to about 300 years after discharge.

  6. Xenon - Wikipedia

    en.wikipedia.org/wiki/Xenon

    Xenon-136 is produced when xenon-135 undergoes neutron capture before it can decay. The ratio of xenon-136 to xenon-135 (or its decay products) can give hints as to the power history of a given reactor and the absence of xenon-136 is a "fingerprint" for nuclear explosions, as xenon-135 is not produced directly but as a product of successive ...

  7. Neutron poison - Wikipedia

    en.wikipedia.org/wiki/Neutron_poison

    Because 95% of the xenon-135 production is from iodine-135 decay, which has a 6- to 7-hour half-life, the production of xenon-135 remains constant; at this point, the xenon-135 concentration reaches a minimum. The concentration then increases to the equilibrium for the new power level in the same time, roughly 40 to 50 hours.

  8. Mountain climbing and treating Alzheimer's: Could xenon gas ...

    www.aol.com/mountain-climbing-treating-alzheimer...

    Inhaled xenon gas caused the microglia to revert to a protective state, leading to a decrease in the amyloid plaques characteristic of Alzheimer’s disease, reduced inflammation, ...

  9. Natural nuclear fission reactor - Wikipedia

    en.wikipedia.org/wiki/Natural_nuclear_fission...

    While caesium-135 is relatively long lived, all caesium-135 produced by the Oklo reactor has since decayed further to stable barium-135. Meanwhile, xenon-136, the product of neutron capture in xenon-135 decays extremely slowly via double beta decay and thus scientists were able to determine the neutronics of this reactor by calculations based ...