Search results
Results From The WOW.Com Content Network
The dependence of a coupling g(μ) on the energy-scale is known as "running of the coupling". The theory of the running of couplings is given by the renormalization group , though it should be kept in mind that the renormalization group is a more general concept describing any sort of scale variation in a physical system (see the full article ...
written in terms of the fine structure constant in natural units, α = e 2 /4π. [2] This beta function tells us that the coupling increases with increasing energy scale, and QED becomes strongly coupled at high energy. In fact, the coupling apparently becomes infinite at some finite energy, resulting in a Landau pole. However, one cannot ...
The scale anomaly, which gives rise to a running coupling constant. In QED this gives rise to the phenomenon of the Landau pole. In quantum chromodynamics (QCD) this leads to asymptotic freedom. The chiral anomaly in either chiral or vector field theories with fermions. This has close connection with topology through the notion of instantons.
The value of the fine-structure constant α is linked to the observed value of this coupling associated with the energy scale of the electron mass: the electron's mass gives a lower bound for this energy scale, because it (and the positron) is the lightest charged object whose quantum loops can contribute to the running.
Because the theory is "sick" for any negative value of the coupling constant, the series does not converge but is at best an asymptotic series. From a modern perspective, we say that QED is not well defined as a quantum field theory to arbitrarily high energy. [30] The coupling constant runs to infinity at finite energy, signalling a Landau pole.
The coupling constant in QED is the fine-structure constant α ≈ 1/137, which is small enough that only the simplest, lowest order, Feynman diagrams need to be considered in realistic calculations. In contrast, the coupling constant in the strong interaction is roughly of the order of one, making complicated, higher order, Feynman diagrams ...
For quantum chromodynamics, the constant changes with respect to the distance between the particles. This phenomenon is known as asymptotic freedom. Forces which have a coupling constant greater than 1 are said to be "strongly coupled" while those with constants less than 1 are said to be "weakly coupled." [7]
(It is a non-trivial result of quantum field theory [2] that the exchange of even-spin bosons like the pion (spin 0, Yukawa force) or the graviton (spin 2, gravity) results in forces always attractive, while odd-spin bosons like the gluons (spin 1, strong interaction), the photon (spin 1, electromagnetic force) or the rho meson (spin 1, Yukawa ...