Search results
Results From The WOW.Com Content Network
Lattice-based cryptography is the generic term for constructions of cryptographic primitives that involve lattices, either in the construction itself or in the security proof. Lattice-based constructions support important standards of post-quantum cryptography . [ 1 ]
IEEE P1363 is an Institute of Electrical and Electronics Engineers (IEEE) standardization project for public-key cryptography. It includes specifications for: Traditional public-key cryptography (IEEE Std 1363-2000 and 1363a-2004) Lattice-based public-key cryptography (IEEE Std 1363.1-2008) Password-based public-key cryptography (IEEE Std 1363. ...
Lattice reduction algorithms aim, given a basis for a lattice, to output a new basis consisting of relatively short, nearly orthogonal vectors. The Lenstra–Lenstra–Lovász lattice basis reduction algorithm (LLL) was an early efficient algorithm for this problem which could output an almost reduced lattice basis in polynomial time. [ 33 ]
NTRU is an open-source public-key cryptosystem that uses lattice-based cryptography to encrypt and decrypt data. It consists of two algorithms: NTRUEncrypt, which is used for encryption, and NTRUSign, which is used for digital signatures.
Download QR code; Print/export Download as PDF; ... Pages in category "Lattice-based cryptography" The following 17 pages are in this category, out of 17 total.
The Short Integer Solution (SIS) problem is an average case problem that is used in lattice-based cryptography constructions. Lattice-based cryptography began in 1996 from a seminal work by Ajtai [ 1 ] who presented a family of one-way functions based on the SIS problem.
Computational hardness assumptions are of particular importance in cryptography. A major goal in cryptography is to create cryptographic primitives with provable security. In some cases, cryptographic protocols are found to have information theoretic security; the one-time pad is a common example. However, information theoretic security cannot ...
In general terms, ideal lattices are lattices corresponding to ideals in rings of the form [] / for some irreducible polynomial of degree . [1] All of the definitions of ideal lattices from prior work are instances of the following general notion: let be a ring whose additive group is isomorphic to (i.e., it is a free -module of rank), and let be an additive isomorphism mapping to some lattice ...