Ad
related to: eulerian cycles explained
Search results
Results From The WOW.Com Content Network
An Eulerian cycle, [note 1] also called an Eulerian circuit or Euler tour, in an undirected graph is a cycle that uses each edge exactly once. If such a cycle exists, the graph is called Eulerian or unicursal. [4] The term "Eulerian graph" is also sometimes used in a weaker sense to denote a graph where every vertex has even degree.
Goal: to construct a B(2, 4) de Bruijn sequence of length 2 4 = 16 using Eulerian (n − 1 = 4 − 1 = 3) 3-D de Bruijn graph cycle. Each edge in this 3-dimensional de Bruijn graph corresponds to a sequence of four digits: the three digits that label the vertex that the edge is leaving followed by the one that labels the edge.
A fundamental cycle basis may be formed from any spanning tree or spanning forest of the given graph, by selecting the cycles formed by the combination of a path in the tree and a single edge outside the tree. Alternatively, if the edges of the graph have positive weights, the minimum weight cycle basis may be constructed in polynomial time.
The Eulerian specification of the flow field is a way of looking at fluid motion that focuses on specific locations in the space through which the fluid flows as time passes. [ 1 ] [ 2 ] This can be visualized by sitting on the bank of a river and watching the water pass the fixed location.
When the graph has an Eulerian circuit (a closed walk that covers every edge once), that circuit is an optimal solution. Otherwise, the optimization problem is to find the smallest number of graph edges to duplicate (or the subset of edges with the minimum possible total weight) so that the resulting multigraph does have an Eulerian circuit. [1]
A Hamiltonian cycle, Hamiltonian circuit, vertex tour or graph cycle is a cycle that visits each vertex exactly once. A graph that contains a Hamiltonian cycle is called a Hamiltonian graph . Similar notions may be defined for directed graphs , where each edge (arc) of a path or cycle can only be traced in a single direction (i.e., the vertices ...
Doctors explained that because her daughter had undergone a tonsillectomy, adenoid removal and ear tube placement just a week-and-a-half prior, her body was already compromised when she contracted ...
The cycle space of a planar graph is the cut space of its dual graph, and vice versa. The minimum weight cycle basis for a planar graph is not necessarily the same as the basis formed by its bounded faces: it can include cycles that are not faces, and some faces may not be included as cycles in the minimum weight cycle basis.