Search results
Results From The WOW.Com Content Network
Piperidine is used as a solvent and as a base. The same is true for certain derivatives: N-formylpiperidine is a polar aprotic solvent with better hydrocarbon solubility than other amide solvents, and 2,2,6,6-tetramethylpiperidine is a highly sterically hindered base, useful because of its low nucleophilicity and high solubility in organic ...
The following chart shows the solubility of various ionic compounds in water at 1 atm pressure and room temperature (approx. 25 °C, 298.15 K). "Soluble" means the ionic compound doesn't precipitate, while "slightly soluble" and "insoluble" mean that a solid will precipitate; "slightly soluble" compounds like calcium sulfate may require heat to precipitate.
The tables below provides information on the variation of solubility of different substances (mostly inorganic compounds) in water with temperature, at one atmosphere pressure. Units of solubility are given in grams of substance per 100 millilitres of water (g/100 ml), unless shown otherwise. The substances are listed in alphabetical order.
Due to its poor solubility in water, piperine is typically extracted from black pepper by using organic solvents like dichloromethane. [5] The amount of piperine varies from 1–2% in long pepper, to 5–10% in commercial white and black peppers.
Hansen solubility parameters were developed by Charles M. Hansen in his Ph.D thesis in 1967 [1] [2] as a way of predicting if one material will dissolve in another and form a solution. [3] They are based on the idea that like dissolves like where one molecule is defined as being 'like' another if it bonds to itself in a similar way.
Dynamic viscosity is a material property which describes the resistance of a fluid to shearing flows. It corresponds roughly to the intuitive notion of a fluid's 'thickness'.
Some substances are soluble in the supercritical state of a solvent (e.g. carbon dioxide) but insoluble in the gaseous or liquid state—or vice versa. This can be used to extract a substance and transport it elsewhere in solution before depositing it in the desired place by allowing or inducing a phase transition in the solvent.
For example, water is very polar, and has a relative static permittivity of 80.10 at 20 °C while n-hexane is non-polar, and has a relative static permittivity of 1.89 at 20 °C. [26] This information is important when designing separation, sample preparation and chromatography techniques in analytical chemistry .