Search results
Results From The WOW.Com Content Network
Latin and Greek letters are used in mathematics, science, engineering, and other areas where mathematical notation is used as symbols for constants, special functions, and also conventionally for variables representing certain quantities.
joule per kelvin (J⋅K −1) constant of integration: varied depending on context speed of light (in vacuum) 299,792,458 meters per second (m/s) speed of sound: meter per second (m/s) specific heat capacity: joule per kilogram per kelvin (J⋅kg −1 ⋅K −1) viscous damping coefficient kilogram per second (kg/s)
Many letters of the Latin alphabet, both capital and small, are used in mathematics, science, and engineering to denote by convention specific or abstracted constants, variables of a certain type, units, multipliers, or physical entities. Certain letters, when combined with special formatting, take on special meaning.
A branch of physics that studies atoms as isolated systems of electrons and an atomic nucleus. Compare nuclear physics. atomic structure atomic weight (A) The sum total of protons (or electrons) and neutrons within an atom. audio frequency A periodic vibration whose frequency is in the band audible to the average human, the human hearing range.
where C is the circumference of a circle, d is the diameter, and r is the radius.More generally, = where L and w are, respectively, the perimeter and the width of any curve of constant width.
The symbol ϒ (U+03D2) is designated specifically for the curled form (), used as a technical symbol, e.g. in physics. The letter phi can occur in two equally frequent stylistic variants, either shaped as (a circle with a vertical stroke through it) or as (a curled shape open at the top). The symbol ϕ (U+03D5) is designated specifically for ...
Mathematical Alphanumeric Symbols is a Unicode block comprising styled forms of Latin and Greek letters and decimal digits that enable mathematicians to denote different notions with different letter styles. The letters in various fonts often have specific, fixed meanings in particular areas of mathematics.
Thus, an object's charge can be exactly 0 e, or exactly 1 e, −1 e, 2 e, etc., but not 1 / 2 e, or −3.8 e, etc. (There may be exceptions to this statement, depending on how "object" is defined; see below.) This is the reason for the terminology "elementary charge": it is meant to imply that it is an indivisible unit of charge.