Search results
Results From The WOW.Com Content Network
The definition of matrix multiplication is that if C = AB for an n × m matrix A and an m × p matrix B, then C is an n × p matrix with entries = =. From this, a simple algorithm can be constructed which loops over the indices i from 1 through n and j from 1 through p, computing the above using a nested loop:
For example, a matrix such that all entries of a row (or a column) are 0 does not have an inverse. If it exists, the inverse of a matrix A is denoted A −1, and, thus verifies = =. A matrix that has an inverse is an invertible matrix.
For example, if A is a 3-by-0 matrix and B is a 0-by-3 matrix, then AB is the 3-by-3 zero matrix corresponding to the null map from a 3-dimensional space V to itself, while BA is a 0-by-0 matrix. There is no common notation for empty matrices, but most computer algebra systems allow creating and computing with them.
As () is a repeated factor, we now need to find two numbers, as so we need an additional relation in order to solve for both. To write the relation of numerators the second fraction needs another factor of ( 1 − 2 x ) {\displaystyle (1-2x)} to convert it to the LCD, giving us 3 x + 5 = A + B ( 1 − 2 x ) {\displaystyle 3x+5=A+B(1-2x)} .
Graphs of functions commonly used in the analysis of algorithms, showing the number of operations versus input size for each function. The following tables list the computational complexity of various algorithms for common mathematical operations.
A square root of a 2×2 matrix M is another 2×2 matrix R such that M = R 2, where R 2 stands for the matrix product of R with itself. In general, there can be zero, two, four, or even an infinitude of square-root matrices. In many cases, such a matrix R can be obtained by an explicit formula.
Multiplication of two matrices is defined if and only if the number of columns of the left matrix is the same as the number of rows of the right matrix. That is, if A is an m × n matrix and B is an s × p matrix, then n needs to be equal to s for the matrix product AB to be defined.
The continuant (,, …,) can be computed by taking the sum of all possible products of x 1,...,x n, in which any number of disjoint pairs of consecutive terms are deleted (Euler's rule).