When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Constructive proof - Wikipedia

    en.wikipedia.org/wiki/Constructive_proof

    In mathematics, a constructive proof is a method of proof that demonstrates the existence of a mathematical object by creating or providing a method for creating the object. This is in contrast to a non-constructive proof (also known as an existence proof or pure existence theorem ), which proves the existence of a particular kind of object ...

  3. Constructivism (philosophy of mathematics) - Wikipedia

    en.wikipedia.org/wiki/Constructivism_(philosophy...

    In classical real analysis, one way to define a real number is as an equivalence class of Cauchy sequences of rational numbers.. In constructive mathematics, one way to construct a real number is as a function ƒ that takes a positive integer and outputs a rational ƒ(n), together with a function g that takes a positive integer n and outputs a positive integer g(n) such that

  4. Proof of impossibility - Wikipedia

    en.wikipedia.org/wiki/Proof_of_impossibility

    The conjecture was disproved in 1966, with a counterexample involving a count of only four different 5th powers summing to another fifth power: 27 5 + 84 5 + 110 5 + 133 5 = 144 5. Proof by counterexample is a form of constructive proof, in that an object disproving the claim is exhibited.

  5. P versus NP problem - Wikipedia

    en.wikipedia.org/wiki/P_versus_NP_problem

    A non-constructive proof might show a solution exists without specifying either an algorithm to obtain it or a specific bound. Even if the proof is constructive, showing an explicit bounding polynomial and algorithmic details, if the polynomial is not very low-order the algorithm might not be sufficiently efficient in practice.

  6. Intuitionistic logic - Wikipedia

    en.wikipedia.org/wiki/Intuitionistic_logic

    Intuitionistic logic has found practical use in mathematics despite the challenges presented by the inability to utilize these rules. One reason for this is that its restrictions produce proofs that have the disjunction and existence properties, making it also suitable for other forms of mathematical constructivism.

  7. Mathematical proof - Wikipedia

    en.wikipedia.org/wiki/Mathematical_proof

    The definition of a formal proof is intended to capture the concept of proofs as written in the practice of mathematics. The soundness of this definition amounts to the belief that a published proof can, in principle, be converted into a formal proof. However, outside the field of automated proof assistants, this is rarely done in practice.

  8. Mathematical logic - Wikipedia

    en.wikipedia.org/wiki/Mathematical_logic

    proof theory and constructive mathematics (considered as parts of a single area). Additionally, sometimes the field of computational complexity theory is also included together with mathematical logic. [2] [3] Each area has a distinct focus, although many techniques and results are shared among multiple areas. The borderlines amongst these ...

  9. Existence theorem - Wikipedia

    en.wikipedia.org/wiki/Existence_theorem

    From the other direction, there has been considerable clarification of what constructive mathematics is—without the emergence of a 'master theory'. For example, according to Errett Bishop's definitions, the continuity of a function such as sin(x) should be proved as a constructive bound on the modulus of continuity, meaning that the existential content of the assertion of continuity is a ...