Search results
Results From The WOW.Com Content Network
Snell's law (also known as the Snell–Descartes law, the ibn-Sahl law, [1] and the law of refraction) is a formula used to describe the relationship between the angles of incidence and refraction, when referring to light or other waves passing through a boundary between two different isotropic media, such as water, glass, or air.
For example, a wavenumber in inverse centimeters can be converted to a frequency expressed in the unit gigahertz by multiplying by 29.979 2458 cm/ns (the speed of light, in centimeters per nanosecond); [5] conversely, an electromagnetic wave at 29.9792458 GHz has a wavelength of 1 cm in free space.
The wavelength can be calculated as the relation between a wave's speed and ordinary frequency. λ = c f . {\displaystyle \lambda ={\frac {c}{\ f\ }}~.} For sound waves, the amplitude of the wave is the difference between the pressure of the undisturbed air and the maximum pressure caused by the wave.
A wavenumber–frequency diagram is a plot displaying the relationship between the wavenumber (spatial frequency) and the frequency (temporal frequency) of certain phenomena. Usually frequencies are placed on the vertical axis, while wavenumbers are placed on the horizontal axis. [1] [2]
The refractive index, , can be seen as the factor by which the speed and the wavelength of the radiation are reduced with respect to their vacuum values: the speed of light in a medium is v = c/n, and similarly the wavelength in that medium is λ = λ 0 /n, where λ 0 is the wavelength of that light in vacuum.
Frequency is inversely proportional to wavelength, according to the equation: [26] = where v is the speed of the wave (c in a vacuum or less in other media), f is the frequency and λ is the wavelength. As waves cross boundaries between different media, their speeds change but their frequencies remain constant.
Relationship between wavelength, angular wavelength, and other wave properties. A quantity related to the wavelength is the angular wavelength (also known as reduced wavelength), usually symbolized by ƛ ("lambda-bar" or barred lambda). It is equal to the ordinary wavelength reduced by a factor of 2π (ƛ = λ/2π), with SI units of meter per ...
The name "dispersion relation" originally comes from optics. It is possible to make the effective speed of light dependent on wavelength by making light pass through a material which has a non-constant index of refraction, or by using light in a non-uniform medium such as a waveguide. In this case, the waveform will spread over time, such that ...