Search results
Results From The WOW.Com Content Network
Suppose a vector norm ‖ ‖ on and a vector norm ‖ ‖ on are given. Any matrix A induces a linear operator from to with respect to the standard basis, and one defines the corresponding induced norm or operator norm or subordinate norm on the space of all matrices as follows: ‖ ‖, = {‖ ‖: ‖ ‖ =} = {‖ ‖ ‖ ‖:} . where denotes the supremum.
The 2-norm of a matrix A is the norm based on the Euclidean vectornorm; that is, the largest value ‖ ‖ when x runs through all vectors with ‖ ‖ =. It is the largest singular value of . In case of a symmetric matrix it is the largest absolute value of its eigenvectors and thus equal to its spectral radius.
Write the triangular matrix U as U = D + N, where D is diagonal and N is strictly upper triangular (and thus a nilpotent matrix). The diagonal matrix D contains the eigenvalues of A in arbitrary order (hence its Frobenius norm, squared, is the sum of the squared moduli of the eigenvalues of A, while the Frobenius norm of A, squared, is the sum ...
Each diagonal element is solved for, and an approximate value is plugged in. The process is then iterated until it converges. This algorithm is a stripped-down version of the Jacobi transformation method of matrix diagonalization. The method is named after Carl Gustav Jacob Jacobi.
In mathematics, the Smith normal form (sometimes abbreviated SNF [1]) is a normal form that can be defined for any matrix (not necessarily square) with entries in a principal ideal domain (PID). The Smith normal form of a matrix is diagonal, and can be obtained from the original matrix by multiplying on the left and right by invertible square ...
If A is a real matrix, its Jordan form can still be non-real. Instead of representing it with complex eigenvalues and ones on the superdiagonal, as discussed above, there exists a real invertible matrix P such that P −1 AP = J is a real block diagonal matrix with each block being a real Jordan block. [15]
The adjugate of a diagonal matrix is again diagonal. Where all matrices are square, A matrix is diagonal if and only if it is triangular and normal. A matrix is diagonal if and only if it is both upper-and lower-triangular. A diagonal matrix is symmetric. The identity matrix I n and zero matrix are diagonal. A 1×1 matrix is always diagonal.
This is because any function of a non-defective matrix acts directly on each of its eigenvalues, and the conjugate transpose of its spectral decomposition is , where is the diagonal matrix of eigenvalues. Likewise, if two normal matrices commute and are therefore simultaneously diagonalizable, any operation between these matrices also acts on ...