Search results
Results From The WOW.Com Content Network
The function calls itself recursively on a smaller version of the input (n - 1) and multiplies the result of the recursive call by n, until reaching the base case, analogously to the mathematical definition of factorial. Recursion in computer programming is exemplified when a function is defined in terms of simpler, often smaller versions of ...
For example, the factorial function can be defined recursively by the equations 0! = 1 and, for all n > 0, n! = n(n − 1)!. Neither equation by itself constitutes a complete definition; the first is the base case, and the second is the recursive case.
This recursion is a primitive recursion because it computes the next value (n+1)! of the function based on the value of n and the previous value n! of the function. On the other hand, the function Fib(n), which returns the nth Fibonacci number, is defined with the recursion equations =, =,
A classic example of recursion is computing the factorial, which is defined recursively by 0! := 1 and n! := n × (n - 1)!.. To recursively compute its result on a given input, a recursive function calls (a copy of) itself with a different ("smaller" in some way) input and uses the result of this call to construct its result.
For every m, the function h(n) = f(m,n) is primitive recursive. f can be explicitly constructed by iteratively repeating all possible ways of creating primitive recursive functions. Thus, it is provably total. One can use a diagonalization argument to show that f is not recursive primitive in itself: had it been such, so would be h(n) = f(n,n)+1.
More generally, recursive definitions of functions can be made whenever the domain is a well-ordered set, using the principle of transfinite recursion. The formal criteria for what constitutes a valid recursive definition are more complex for the general case. An outline of the general proof and the criteria can be found in James Munkres' Topology.
Because fixed-point combinators can be used to implement recursion, it is possible to use them to describe specific types of recursive computations, such as those in fixed-point iteration, iterative methods, recursive join in relational databases, data-flow analysis, FIRST and FOLLOW sets of non-terminals in a context-free grammar, transitive ...
function factorial (n is a non-negative integer) if n is 0 then return 1 [by the convention that 0! = 1] else if n is in lookup-table then return lookup-table-value-for-n else let x = factorial(n – 1) times n [recursively invoke factorial with the parameter 1 less than n] store x in lookup-table in the n th slot [remember the result of n! for ...