Search results
Results From The WOW.Com Content Network
Young's modulus is defined as the ratio of the stress (force per unit area) applied to the object and the resulting axial strain (displacement or deformation) in the linear elastic region of the material. Although Young's modulus is named after the 19th-century British scientist Thomas Young, the concept was developed in 1727 by Leonhard Euler.
Elastic properties describe the reversible deformation (elastic response) of a material to an applied stress. They are a subset of the material properties that provide a quantitative description of the characteristics of a material, like its strength .
Bulk modulus: Ratio of pressure to volumetric compression (GPa) or ratio of the infinitesimal pressure increase to the resulting relative decrease of the volume; Coefficient of restitution: The ratio of the final to initial relative velocity between two objects after they collide. Range: 0–1, 1 for perfectly elastic collision.
This is a combination of a large temperature gradient due to low thermal conductivity, in addition to rapid change in temperature on brittle materials. The change in temperature causes stresses on the surface that are in tension, which encourages crack formation and propagation. Ceramics materials are usually susceptible to thermal shock. [2]
It measures the resonant frequencies in order to calculate the Young's modulus, shear modulus, Poisson's ratio and internal friction of predefined shapes like rectangular bars, cylindrical rods and disc shaped samples. The measurements can be performed at room temperature or at elevated temperatures (up to 1700 °C) under different atmospheres. [2]
G is the shear modulus of the elastic materials; E is the Young's modulus; ρ is the density; ν is Poisson's ratio. The last quantity is not an independent one, as E = 3K(1 − 2ν). The speed of pressure waves depends both on the pressure and shear resistance properties of the material, while the speed of shear waves depends on the shear ...
Young's modulus and shear modulus are only for solids, whereas the bulk modulus is for solids, liquids, and gases. The elasticity of materials is described by a stress–strain curve , which shows the relation between stress (the average restorative internal force per unit area) and strain (the relative deformation). [ 2 ]
Volume, modulus of elasticity, distribution of forces, and yield strength affect the impact strength of a material. In order for a material or object to have a high impact strength, the stresses must be distributed evenly throughout the object. It also must have a large volume with a low modulus of elasticity and a high material yield strength. [7]