Search results
Results From The WOW.Com Content Network
Rayleigh waves are distinct from other types of surface or guided acoustic waves such as Love waves or Lamb waves, both being types of guided waves supported by a layer, or longitudinal and shear waves, that travel in the bulk. Rayleigh waves have a speed slightly less than shear waves by a factor dependent on the elastic constants of the ...
Surface waves are slower than P-waves(compressional waves) and S-waves(transverse waves). Surface waves are classified into two basic types, Rayleigh waves and Love waves. Rayleigh waves travel in a longitudinal manner (the wave motion is parallel to the direction of wave propagation) with particle motion in a retrograde elliptical motion ...
Experimental image of surface acoustic waves on a crystal of tellurium oxide [1]. A surface acoustic wave (SAW) is an acoustic wave traveling along the surface of a material exhibiting elasticity, with an amplitude that typically decays exponentially with depth into the material, such that they are confined to a depth of about one wavelength.
This radiative ground wave is known as Norton surface wave, or more properly Norton ground wave, because ground waves in radio propagation are not confined to the surface. Another type of surface wave is the non-radiative, bound-mode Zenneck surface wave or Zenneck–Sommerfeld surface wave .
Hyper–Rayleigh scattering optical activity (/ ˈ r eɪ l i / RAY-lee), a form of chiroptical harmonic scattering, is a nonlinear optical physical effect whereby chiral scatterers (such as nanoparticles or molecules) convert light (or other electromagnetic radiation) to higher frequencies via harmonic generation processes, in a way that the ...
Low velocity, low frequency and high amplitude Rayleigh waves are frequently present on a seismic record and can obscure signal, degrading overall data quality. They are known within the industry as ‘Ground Roll’ and are an example of coherent noise that can be attenuated with a carefully designed seismic survey. [ 13 ]
Rayleigh waves; Rayleigh (unit), a unit of photon flux named after the 4th Baron Rayleigh; Rayl, rayl or Rayleigh, two units of specific acoustic impedance and characteristic acoustic impedance, named after the 3rd Baron Rayleigh; Rayleigh criterion in angular resolution; Rayleigh distribution; Rayleigh fading; Rayleigh law on low-field ...
The formula to calculate surface wave magnitude is: [3] = + (), where A is the maximum particle displacement in surface waves (vector sum of the two horizontal displacements) in μm, T is the corresponding period in s (usually 20 ± 2 seconds), Δ is the epicentral distance in °, and