Ads
related to: reaction profile chemistry example problems with solutions
Search results
Results From The WOW.Com Content Network
Another example is the unimolecular nucleophilic substitution (S N 1) reaction in organic chemistry, where it is the first, rate-determining step that is unimolecular. A specific case is the basic hydrolysis of tert-butyl bromide (t-C 4 H 9 Br) by aqueous sodium hydroxide. The mechanism has two steps (where R denotes the tert-butyl radical t-C ...
In theoretical chemistry, an energy profile is a theoretical representation of a chemical reaction or process as a single energetic pathway as the reactants are transformed into products. This pathway runs along the reaction coordinate , which is a parametric curve that follows the pathway of the reaction and indicates its progress; thus ...
In 2020, it was announced that Google's AlphaFold, a neural network based on DeepMind artificial intelligence, is capable of predicting a protein's final shape based solely on its amino-acid chain with an accuracy of around 90% on a test sample of proteins used by the team.
Chemical kinetics, also known as reaction kinetics, is the branch of physical chemistry that is concerned with understanding the rates of chemical reactions. It is different from chemical thermodynamics , which deals with the direction in which a reaction occurs but in itself tells nothing about its rate.
For example, in the hydrogenation reaction of ethylene the H 2 molecule must approach the bonding zone between the atoms, and only a few of all the possible collisions fulfill this requirement. To alleviate this problem, a new concept must be introduced: the steric factor ρ .
In physical chemistry, the Arrhenius equation is a formula for the temperature dependence of reaction rates.The equation was proposed by Svante Arrhenius in 1889, based on the work of Dutch chemist Jacobus Henricus van 't Hoff who had noted in 1884 that the van 't Hoff equation for the temperature dependence of equilibrium constants suggests such a formula for the rates of both forward and ...
The Rice–Ramsperger–Kassel–Marcus (RRKM) theory is a theory of chemical reactivity. [1] [2] [3] It was developed by Rice and Ramsperger in 1927 [4] and Kassel in 1928 [5] (RRK theory [6]) and generalized (into the RRKM theory) in 1952 by Marcus [7] who took the transition state theory developed by Eyring in 1935 into account.
The laminar finite rate model computes the chemical source terms using the Arrhenius expressions and ignores turbulence fluctuations. This model provides with the exact solution for laminar flames but gives inaccurate solution for turbulent flames, in which turbulence highly affects the chemistry reaction rates, due to highly non-linear Arrhenius chemical kinetics.