Search results
Results From The WOW.Com Content Network
In graph theory, the Möbius ladder M n, for even numbers n, is formed from an n-cycle by adding edges (called "rungs") connecting opposite pairs of vertices in the cycle. It is a cubic, circulant graph, so-named because (with the exception of M 6 (the utility graph K 3,3), M n has exactly n/2 four-cycles [1] which link together by their shared edges to form a topological Möbius strip.
PARI/GP is a computer algebra system that facilitates number-theory computation. Besides support of factoring, algebraic number theory, and analysis of elliptic curves, it works with mathematical objects like matrices, polynomials, power series, algebraic numbers, and transcendental functions. [3]
[3] Robertson's apex graph is shown in the figure. It can be obtained by connecting an apex vertex to each of the degree-three vertices of a rhombic dodecahedron, or by merging two diametrally opposed vertices of a four-dimensional hypercube graph. Because the rhombic dodecahedron's graph is planar, Robertson's graph is an apex graph.
The Pappus graph. The Levi graph of the Pappus configuration is known as the Pappus graph.It is a bipartite symmetric cubic graph with 18 vertices and 27 edges. [3]Adding three more parallel lines to the Pappus configuration, through each triple of points that are not already connected by lines of the configuration, produces the Hesse configuration.
Inflection points in differential geometry are the points of the curve where the curvature changes its sign. [2] [3] For example, the graph of the differentiable function has an inflection point at (x, f(x)) if and only if its first derivative f' has an isolated extremum at x. (this is not the same as saying that f has an extremum).
In inversive geometry, an inverse curve of a given curve C is the result of applying an inverse operation to C. Specifically, with respect to a fixed circle with center O and radius k the inverse of a point Q is the point P for which P lies on the ray OQ and OP·OQ = k 2. The inverse of the curve C is then the locus of P as Q runs over C.
Each curve in this example is a locus defined as the conchoid of the point P and the line l.In this example, P is 8 cm from l. In geometry, a locus (plural: loci) (Latin word for "place", "location") is a set of all points (commonly, a line, a line segment, a curve or a surface), whose location satisfies or is determined by one or more specified conditions.
The term apex may used in different contexts: In an isosceles triangle, the apex is the vertex where the two sides of equal length meet, opposite the unequal third side. [1] Here the point A is the apex. In a pyramid or cone, the apex is the vertex at the "top" (opposite the base). In a pyramid, the vertex is the point that is part of all the ...