Search results
Results From The WOW.Com Content Network
The power object of a set A is given by its power set, and the exponential object of the sets A and B is given by the set of all functions from A to B. Set is thus a topos (and in particular cartesian closed and exact in the sense of Barr). Set is not abelian, additive nor preadditive. Every non-empty set is an injective object in Set.
A set of polygons in an Euler diagram This set equals the one depicted above since both have the very same elements.. In mathematics, a set is a collection of different [1] things; [2] [3] [4] these things are called elements or members of the set and are typically mathematical objects of any kind: numbers, symbols, points in space, lines, other geometrical shapes, variables, or even other ...
This article lists mathematical properties and laws of sets, involving the set-theoretic operations of union, intersection, and complementation and the relations of set equality and set inclusion. It also provides systematic procedures for evaluating expressions, and performing calculations, involving these operations and relations.
For every set X, there is a unique function, called the empty function, or empty map, from the empty set to X. The graph of an empty function is the empty set. [note 5] The existence of empty functions is needed both for the coherency of the theory and for avoiding exceptions concerning the empty set in many statements.
The only translation-invariant measure on = with domain ℘ that is finite on every compact subset of is the trivial set function ℘ [,] that is identically equal to (that is, it sends every to ) [6] However, if countable additivity is weakened to finite additivity then a non-trivial set function with these properties does exist and moreover ...
If A ~ B and C ~ D then A C ~ B D. A B ∪ C ~ A B × A C for disjoint B and C. (A × B) C ~ A C × B C (A B) C ~ A B×C; These properties are used to justify cardinal exponentiation. Furthermore, the power set of a given set A (the set of all subsets of A) is equinumerous to the set 2 A, the set of all functions from the set A to a set ...
A bijective function from a set to itself is also called a permutation, [1] and the set of all permutations of a set forms its symmetric group. Some bijections with further properties have received specific names, which include automorphisms, isomorphisms, homeomorphisms, diffeomorphisms, permutation groups, and most geometric transformations.
The algebra of sets is the set-theoretic analogue of the algebra of numbers. Just as arithmetic addition and multiplication are associative and commutative, so are set union and intersection; just as the arithmetic relation "less than or equal" is reflexive, antisymmetric and transitive, so is the set relation of "subset".