When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Curve - Wikipedia

    en.wikipedia.org/wiki/Curve

    A non-closed curve may also be called an open curve. If the domain of a topological curve is a closed and bounded interval = [,], the curve is called a path, also known as topological arc (or just arc). A curve is simple if it is the image of an interval or a circle by an injective continuous function.

  3. Jordan curve theorem - Wikipedia

    en.wikipedia.org/wiki/Jordan_curve_theorem

    A Jordan curve or a simple closed curve in the plane R 2 is the image C of an injective continuous map of a circle into the plane, φ: S 1 → R 2. A Jordan arc in the plane is the image of an injective continuous map of a closed and bounded interval [a, b] into the plane. It is a plane curve that is not necessarily smooth nor algebraic.

  4. Curve orientation - Wikipedia

    en.wikipedia.org/wiki/Curve_orientation

    This definition relies on the fact that every simple closed curve admits a well-defined interior, which follows from the Jordan curve theorem. The inner loop of a beltway road in a country where people drive on the right side of the road is an example of a negatively oriented curve.

  5. Convex curve - Wikipedia

    en.wikipedia.org/wiki/Convex_curve

    By the Jordan curve theorem, a simple closed curve divides the plane into interior and exterior regions, and another equivalent definition of a closed convex curve is that it is a simple closed curve whose union with its interior is a convex set. [9] [17] Examples of open and unbounded convex curves include the graphs of convex functions.

  6. Simple polygon - Wikipedia

    en.wikipedia.org/wiki/Simple_polygon

    Parts of a simple polygon. A simple polygon is a closed curve in the Euclidean plane consisting of straight line segments, meeting end-to-end to form a polygonal chain. [1] Two line segments meet at every endpoint, and there are no other points of intersection between the line segments. No proper subset of the line segments has the same ...

  7. Curve of constant width - Wikipedia

    en.wikipedia.org/wiki/Curve_of_constant_width

    In geometry, a curve of constant width is a simple closed curve in the plane whose width (the distance between parallel supporting lines) is the same in all directions. The shape bounded by a curve of constant width is a body of constant width or an orbiform , the name given to these shapes by Leonhard Euler . [ 1 ]

  8. Borromean rings - Wikipedia

    en.wikipedia.org/wiki/Borromean_rings

    In mathematics, the Borromean rings [a] are three simple closed curves in three-dimensional space that are topologically linked and cannot be separated from each other, but that break apart into two unknotted and unlinked loops when any one of the three is cut or removed.

  9. Zindler curve - Wikipedia

    en.wikipedia.org/wiki/Zindler_curve

    Figure 1: Zindler curve. Any of the chords of equal length cuts the curve and the enclosed area into halves. Figure 2: Examples of Zindler curves with a = 8 (blue), a = 16 (green) and a = 24 (red). A Zindler curve is a simple closed plane curve with the defining property that: (L) All chords which cut the curve length into halves have the same ...