When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Taylor series - Wikipedia

    en.wikipedia.org/wiki/Taylor_series

    In fact, the set of functions with a convergent Taylor series is a meager set in the Fréchet space of smooth functions. Even if the Taylor series of a function f does converge, its limit need not be equal to the value of the function f (x). For example, the function

  3. Taylor expansions for the moments of functions of random ...

    en.wikipedia.org/wiki/Taylor_expansions_for_the...

    In probability theory, it is possible to approximate the moments of a function f of a random variable X using Taylor expansions, provided that f is sufficiently differentiable and that the moments of X are finite. A simulation-based alternative to this approximation is the application of Monte Carlo simulations.

  4. Taylor's theorem - Wikipedia

    en.wikipedia.org/wiki/Taylor's_theorem

    For a smooth function, the Taylor polynomial is the truncation at the order of the Taylor series of the function. The first-order Taylor polynomial is the linear approximation of the function, and the second-order Taylor polynomial is often referred to as the quadratic approximation. [1]

  5. Radius of convergence - Wikipedia

    en.wikipedia.org/wiki/Radius_of_convergence

    When it is positive, the power series converges absolutely and uniformly on compact sets inside the open disk of radius equal to the radius of convergence, and it is the Taylor series of the analytic function to which it converges. In case of multiple singularities of a function (singularities are those values of the argument for which the ...

  6. Analytic function - Wikipedia

    en.wikipedia.org/wiki/Analytic_function

    The exponential function is analytic. Any Taylor series for this function converges not only for x close enough to x 0 (as in the definition) but for all values of x (real or complex). The trigonometric functions, logarithm, and the power functions are analytic on any open set of their domain.

  7. Non-analytic smooth function - Wikipedia

    en.wikipedia.org/wiki/Non-analytic_smooth_function

    For every sequence α 0, α 1, α 2, . . . of real or complex numbers, the following construction shows the existence of a smooth function F on the real line which has these numbers as derivatives at the origin. [1] In particular, every sequence of numbers can appear as the coefficients of the Taylor series of a smooth function.

  8. Universal Taylor series - Wikipedia

    en.wikipedia.org/wiki/Universal_Taylor_series

    The function () = ⁡ (/) is the uniform limit of its Taylor expansion, which starts with degree 3. Also, ‖ f − g ‖ ∞ < c {\displaystyle \|f-g\|_{\infty }<c} . Thus to ϵ {\displaystyle \epsilon } -approximate f ( x ) = x {\displaystyle f(x)=x} using a polynomial with lowest degree 3, we do so for g ( x ) {\displaystyle g(x)} with c ...

  9. Series expansion - Wikipedia

    en.wikipedia.org/wiki/Series_expansion

    A Laurent series is a generalization of the Taylor series, allowing terms with negative exponents; it takes the form = and converges in an annulus. [6] In particular, a Laurent series can be used to examine the behavior of a complex function near a singularity by considering the series expansion on an annulus centered at the singularity.