Search results
Results From The WOW.Com Content Network
Coronal section of a human brain. BA41(red) and BA42(green) are auditory cortex. BA22(yellow) is Brodmann area 22, HF(blue) is hippocampal formation and pSTG is posterior part of superior temporal gyrus. The auditory cortex is the part of the temporal lobe that processes auditory information in humans and many other vertebrates.
[10] Like lower regions, this region of the brain has combination-sensitive neurons that have nonlinear responses to stimuli. [ 6 ] Recent studies conducted in bats and other mammals have revealed that the ability to process and interpret modulation in frequencies primarily occurs in the superior and middle temporal gyri of the temporal lobe. [ 6 ]
In the last two decades, significant advances occurred in our understanding of the neural processing of sounds in primates. Initially by recording of neural activity in the auditory cortices of monkeys [18] [19] and later elaborated via histological staining [20] [21] [22] and fMRI scanning studies, [23] 3 auditory fields were identified in the primary auditory cortex, and 9 associative ...
The superior temporal gyrus (STG [1]) is one of three (sometimes two) gyri in the temporal lobe of the human brain, which is located laterally to the head, situated somewhat above the external ear. The superior temporal gyrus is bounded by: the lateral sulcus above; the superior temporal sulcus (not always present or visible) below;
The auditosensory cortex is the part of the auditory system that is associated with the sense of hearing in humans. It occupies the bilateral primary auditory cortex in the temporal lobe of the mammalian brain. [1] The term is used to describe Brodmann areas 41 and 42 together with the transverse temporal gyrus. [2]
Graph showing a typical Auditory Brainstem Response. The auditory brainstem response (ABR), also called brainstem evoked response audiometry (BERA) or brainstem auditory evoked potentials (BAEPs) or brainstem auditory evoked responses (BAERs) [1] [2] is an auditory evoked potential extracted from ongoing electrical activity in the brain and recorded via electrodes placed on the scalp.
At the nerve root the fibers branch to innervate the ventral cochlear nucleus and the deep layer of the dorsal cochlear nucleus. All acoustic information thus enters the brain through the cochlear nuclei, where the processing of acoustic information begins. The outputs from the cochlear nuclei are received in higher regions of the auditory ...
A high impedance load (e.g. by plugging the end of the line) will cause a reflected wave in which the direction of the pressure wave is reversed but the sign of the pressure remains the same. Since a transmission line behaves like a four terminal model, one cannot really define or measure the impedance of a transmission line component.