Search results
Results From The WOW.Com Content Network
In science, prevalence describes a proportion (typically expressed as a percentage). For example, the prevalence of obesity among American adults in 2001 was estimated by the U. S. Centers for Disease Control (CDC) at approximately 20.9%. [5] Prevalence is a term that means being widespread and it is distinct from incidence.
The positive predictive value (PPV), or precision, is defined as = + = where a "true positive" is the event that the test makes a positive prediction, and the subject has a positive result under the gold standard, and a "false positive" is the event that the test makes a positive prediction, and the subject has a negative result under the gold standard.
For example, if the control group, using no treatment at all, had their own base rate of 1/20 recoveries within 1 day and a treatment had a 1/100 base rate of recovery within 1 day, we see that the treatment actively decreases the recovery. The base rate is an important concept in statistical inference, particularly in Bayesian statistics. [2]
In epidemiology, a rate ratio, sometimes called an incidence density ratio or incidence rate ratio, is a relative difference measure used to compare the incidence rates of events occurring at any given point in time.
Prevalence has a significant impact on prediction values. As an example, suppose there is a test for a disease with 99% sensitivity and 99% specificity. If 2000 people are tested and the prevalence (in the sample) is 50%, 1000 of them are sick and 1000 of them are healthy.
Incidence is usually more useful than prevalence in understanding the disease etiology: for example, if the incidence rate of a disease in a population increases, then there is a risk factor that promotes the incidence. For example, consider a disease that takes a long time to cure and was widespread in 2002 but dissipated in 2003.
In a classification task, the precision for a class is the number of true positives (i.e. the number of items correctly labelled as belonging to the positive class) divided by the total number of elements labelled as belonging to the positive class (i.e. the sum of true positives and false positives, which are items incorrectly labelled as belonging to the class).
For example, say one wants to calculate with a calculator N 10, the population at the tenth generation, knowing N 0 the initial population and λ the finite rate of increase. With the last formula, the result is immediate by plugging t = 10, whether with the previous one it is necessary to know N 9, N 8, ..., N 2 until N 1. We can identify ...