When.com Web Search

  1. Ad

    related to: multi wavelength diffraction test for gas constant energy and mass effect

Search results

  1. Results From The WOW.Com Content Network
  2. Multi-wavelength anomalous diffraction - Wikipedia

    en.wikipedia.org/wiki/Multi-wavelength_anomalous...

    Multi-wavelength anomalous diffraction (sometimes Multi-wavelength anomalous dispersion; abbreviated MAD) is a technique used in X-ray crystallography that facilitates the determination of the three-dimensional structure of biological macromolecules (e.g. DNA, drug receptors) via solution of the phase problem. [1]

  3. Mie scattering - Wikipedia

    en.wikipedia.org/wiki/Mie_scattering

    Mie theory is often applied in laser diffraction analysis to inspect the particle sizing effect. [28] While early computers in the 1970s were only able to compute diffraction data with the more simple Fraunhofer approximation, Mie is widely used since the 1990s and officially recommended for particles below 50 micrometers in guideline ISO 13320 ...

  4. Static light scattering - Wikipedia

    en.wikipedia.org/wiki/Static_light_scattering

    A more sophisticated analysis known as 'composition-gradient static (or multi-angle) light scattering' (CG-SLS or CG-MALS) is an important class of methods to investigate protein–protein interactions, colligative properties, and other macromolecular interactions as it yields, in addition to size and molecular weight, information on the ...

  5. X-ray crystallography - Wikipedia

    en.wikipedia.org/wiki/X-ray_crystallography

    For example, multi-wavelength anomalous dispersion phasing requires that the scattering be recorded at least three (and usually four, for redundancy) wavelengths of the incoming X-ray radiation. A single crystal may degrade too much during the collection of one data set, owing to radiation damage; in such cases, data sets on multiple crystals ...

  6. Mass attenuation coefficient - Wikipedia

    en.wikipedia.org/wiki/Mass_attenuation_coefficient

    Mass attenuation coefficients of selected elements for X-ray photons with energies up to 250 keV. The mass attenuation coefficient, or mass narrow beam attenuation coefficient of a material is the attenuation coefficient normalized by the density of the material; that is, the attenuation per unit mass (rather than per unit of distance).

  7. Electron scattering - Wikipedia

    en.wikipedia.org/wiki/Electron_scattering

    The coefficient of (1 − cos θ) is known as the Compton wavelength, but is in fact a proportionality constant for the wavelength shift. [31] The collision causes the photon wavelength to increase by somewhere between 0 (for a scattering angle of 0°) and twice the Compton wavelength (for a scattering angle of 180°). [32]

  8. Rutherford scattering experiments - Wikipedia

    en.wikipedia.org/wiki/Rutherford_scattering...

    The prevailing model of atomic structure before Rutherford's experiments was devised by J. J. Thomson. [2]: 123 Thomson had discovered the electron through his work on cathode rays [3] and proposed that they existed within atoms, and an electric current is electrons hopping from one atom to an adjacent one in a series.

  9. Davisson–Germer experiment - Wikipedia

    en.wikipedia.org/wiki/Davisson–Germer_experiment

    Davisson began work in 1921 to study electron bombardment and secondary electron emissions. A series of experiments continued through 1925. Prior to 1923, Davisson had been working with Charles H. Kunsman on detecting the effects of electron bombardment on tungsten when they noticed that 1% of the electrons bounced straight back to the electron gun in elastic scattering. This sm

  1. Related searches multi wavelength diffraction test for gas constant energy and mass effect

    multi wavelength diffractionmulti wavelength anomalous diffraction