Search results
Results From The WOW.Com Content Network
Enoyl-CoA-(∆) isomerase (EC 5.3.3.8, also known as dodecenoyl-CoA-(∆) isomerase, 3,2-trans-enoyl-CoA isomerase, ∆3(cis),∆2(trans)-enoyl-CoA isomerase, or acetylene-allene isomerase, [1] is an enzyme that catalyzes the conversion of cis- or trans-double bonds of coenzyme A (CoA) bound fatty acids at gamma-carbon (position 3) to trans double bonds at beta-carbon (position 2) as below:
Very often, cis–trans stereoisomers contain double bonds or ring structures. In both cases the rotation of bonds is restricted or prevented. [4] When the substituent groups are oriented in the same direction, the diastereomer is referred to as cis, whereas when the substituents are oriented in opposing directions, the diastereomer is referred to as trans.
This enzyme belongs to the family of isomerases, specifically cis-trans isomerases. The systematic name of this enzyme class is 4-maleylacetoacetate cis-trans-isomerase. 4-Maleylacetoacetate isomerase is an enzyme involved in the degradation of L-phenylalanine. It is encoded by the gene glutathione S-transferase zeta 1, or GSTZ1.
The isomerization energy, for example, for converting from a stable cis isomer to the less stable trans isomer is greater than for the reverse reaction, explaining why in the absence of isomerases or an outside energy source such as ultraviolet radiation a given cis isomer tends to be present in greater amounts than the trans isomer.
In enzymology, a maleate isomerase (EC 5.2.1.1), or maleate cis-tran isomerase, is a member of the Asp/Glu racemase superfamily discovered in bacteria. It is responsible for catalyzing cis-trans isomerization of the C2-C3 double bond in maleate to produce fumarate, [1] which is a critical intermediate in citric acid cycle. [2]
Traditionally, double bond stereochemistry was described as either cis (Latin, on this side) or trans (Latin, across), in reference to the relative position of substituents on either side of a double bond. A simple example of cis–trans isomerism is the 1,2-disubstituted ethenes, like the dichloroethene (C 2 H 2 Cl 2) isomers shown below. [7]
A ban on such therapy, which aims to suppress or change a person’s sexual orientation or gender identity, was first promised in 2018.
The trans isomer is more stable by approximately 50 kJ/mol, and the barrier to isomerization in the ground state is approximately 100 kJ/mol. Azobenzene photoisomerization. The trans form (left) can be converted to the cis form (right) using a UV wavelength of 300–400 nm. Visible illumination at >400 nm converts the molecule back to the trans ...