When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Faraday paradox - Wikipedia

    en.wikipedia.org/wiki/Faraday_paradox

    Since the force on charges expressed by the Lorentz equation depends upon the relative motion of the magnetic field (i.e. the laboratory frame) to the conductor where the EMF is located it was speculated that in the case when the magnet rotates with the disk but a voltage still develops, the magnetic field (i.e. the laboratory frame) must ...

  3. Force between magnets - Wikipedia

    en.wikipedia.org/wiki/Force_between_magnets

    The magnetic pole model assumes that the magnetic forces between magnets are due to magnetic charges near the poles. This model works even close to the magnet when the magnetic field becomes more complicated, and more dependent on the detailed shape and magnetization of the magnet than just the magnetic dipole contribution.

  4. Faraday's law of induction - Wikipedia

    en.wikipedia.org/wiki/Faraday's_law_of_induction

    Faraday's law is a single equation describing two different phenomena: the motional emf generated by a magnetic force on a moving wire (see the Lorentz force), and the transformer emf generated by an electric force due to a changing magnetic field (described by the Maxwell–Faraday equation).

  5. Mathematical descriptions of the electromagnetic field

    en.wikipedia.org/wiki/Mathematical_descriptions...

    Outside of this wire the magnetic induction is zero, in contrast to the vector potential, which essentially depends on the magnetic flux through the cross-section of the wire and does not vanish outside. Since there is no electric field either, the Maxwell tensor F = 0 throughout the space-time region outside the tube, during the experiment ...

  6. Magnetic field - Wikipedia

    en.wikipedia.org/wiki/Magnetic_field

    Using the definition of the cross product, the magnetic force can also be written as a scalar equation: [10]: 357 = ⁡ where F magnetic, v, and B are the scalar magnitude of their respective vectors, and θ is the angle between the velocity of the particle and the magnetic field.

  7. Conservative force - Wikipedia

    en.wikipedia.org/wiki/Conservative_force

    In physics, a conservative force is a force with the property that the total work done by the force in moving a particle between two points is independent of the path taken. [1] Equivalently, if a particle travels in a closed loop, the total work done (the sum of the force acting along the path multiplied by the displacement ) by a conservative ...

  8. Action at a distance - Wikipedia

    en.wikipedia.org/wiki/Action_at_a_distance

    Glazed frame, containing "Delineation of Lines of Magnetic Force by Iron filings" prepared by Michael Faraday. Michael Faraday was the first who suggested that action at a distance was inadequate as an account of electric and magnetic forces, even in the form of a (mathematical) potential field.

  9. Electricity - Wikipedia

    en.wikipedia.org/wiki/Electricity

    The force also depended on the direction of the current, for if the flow was reversed, then the force did too. [52] Ørsted did not fully understand his discovery, but he observed the effect was reciprocal: a current exerts a force on a magnet, and a magnetic field exerts a force on a current.