Ads
related to: a2-b2 formula algebra 2 problems
Search results
Results From The WOW.Com Content Network
Let ABC be a triangle with side lengths a, b, and c, with a 2 + b 2 = c 2. Construct a second triangle with sides of length a and b containing a right angle. By the Pythagorean theorem, it follows that the hypotenuse of this triangle has length c = √ a 2 + b 2, the same as the hypotenuse of the first triangle.
Animation demonstrating the smallest Pythagorean triple, 3 2 + 4 2 = 5 2. A Pythagorean triple consists of three positive integers a, b, and c, such that a 2 + b 2 = c 2.Such a triple is commonly written (a, b, c), a well-known example is (3, 4, 5).
The third formula shown is the result of solving for a in the quadratic equation a 2 − 2ab cos γ + b 2 − c 2 = 0. This equation can have 2, 1, or 0 positive solutions corresponding to the number of possible triangles given the data.
Visual proof of the Pythagorean identity: for any angle , the point (,) = (, ) lies on the unit circle, which satisfies the equation + =.Thus, + =. In mathematics, an identity is an equality relating one mathematical expression A to another mathematical expression B, such that A and B (which might contain some variables) produce the same value for all values of the variables ...
This method can be applied to problem #6 at IMO 1988: Let a and b be positive integers such that ab + 1 divides a 2 + b 2. Prove that a 2 + b 2 / ab + 1 is a perfect square. Let a 2 + b 2 / ab + 1 = q and fix the value of q. If q = 1, q is a perfect square as desired. If q = 2, then (a-b) 2 = 2 and there is no integral solution ...
IM 67118, also known as Db 2-146, is an Old Babylonian clay tablet in the collection of the Iraq Museum that contains the solution to a problem in plane geometry concerning a rectangle with given area and diagonal.
Ad
related to: a2-b2 formula algebra 2 problems