When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Bounded operator - Wikipedia

    en.wikipedia.org/wiki/Bounded_operator

    A linear operator : between two topological vector spaces (TVSs) is called a bounded linear operator or just bounded if whenever is bounded in then () is bounded in . A subset of a TVS is called bounded (or more precisely, von Neumann bounded ) if every neighborhood of the origin absorbs it.

  3. Wildcard (Java) - Wikipedia

    en.wikipedia.org/wiki/Wildcard_(Java)

    In the Java programming language, the wildcard? is a special kind of type argument [1] that controls the type safety of the use of generic (parameterized) types. [2] It can be used in variable declarations and instantiations as well as in method definitions, but not in the definition of a generic type.

  4. Category:Articles with example Java code - Wikipedia

    en.wikipedia.org/wiki/Category:Articles_with...

    Download QR code; Print/export ... Pages in category "Articles with example Java code" ... Boilerplate code; Bounded quantification; Boxing (computer programming) ...

  5. Unitary operator - Wikipedia

    en.wikipedia.org/wiki/Unitary_operator

    Thus a unitary operator is a bounded linear operator that is both an isometry and a coisometry, [1] or, equivalently, a surjective isometry. [2] An equivalent definition is the following: Definition 2. A unitary operator is a bounded linear operator U : H → H on a Hilbert space H for which the following hold: U is surjective, and

  6. Bounded function - Wikipedia

    en.wikipedia.org/wiki/Bounded_function

    A bounded operator: is not a bounded function in the sense of this page's definition (unless =), but has the weaker property of preserving boundedness; bounded sets are mapped to bounded sets (). This definition can be extended to any function f : X → Y {\displaystyle f:X\rightarrow Y} if X {\displaystyle X} and Y {\displaystyle Y} allow for ...

  7. Strictly singular operator - Wikipedia

    en.wikipedia.org/wiki/Strictly_singular_operator

    For example, if X is a Banach space and T is a strictly singular operator in B(X) then its spectrum satisfies the following properties: (i) the cardinality of () is at most countable; (ii) () (except possibly in the trivial case where X is finite-dimensional); (iii) zero is the only possible limit point of (); and (iv) every nonzero () is an ...

  8. Hilbert–Schmidt operator - Wikipedia

    en.wikipedia.org/wiki/Hilbert–Schmidt_operator

    An important class of examples is provided by Hilbert–Schmidt integral operators. Every bounded operator with a finite-dimensional range (these are called operators of finite rank) is a Hilbert–Schmidt operator. The identity operator on a Hilbert space is a Hilbert–Schmidt operator if and only if the Hilbert space is finite-dimensional.

  9. Stinespring dilation theorem - Wikipedia

    en.wikipedia.org/wiki/Stinespring_dilation_theorem

    An operator map of the form T ↦ V*TV. Moreover, Stinespring's theorem is a structure theorem from a C*-algebra into the algebra of bounded operators on a Hilbert space. Completely positive maps are shown to be simple modifications of *-representations, or sometimes called *-homomorphisms.