Search results
Results From The WOW.Com Content Network
An isolated vertex is a vertex with degree zero; that is, a vertex that is not an endpoint of any edge (the example image illustrates one isolated vertex). [1] A leaf vertex (also pendant vertex) is a vertex with degree one. In a directed graph, one can distinguish the outdegree (number of outgoing edges), denoted 𝛿 + (v), from the indegree ...
Bipartite distance-hereditary graphs can be built up from a single vertex by adding only pendant vertices and false twins, since any true twin would form a triangle, but the pendant vertex and false twin operations preserve bipartiteness. Every bipartite distance-hereditary graph is chordal bipartite and modular. [11]
A vertex with degree 1 is called a leaf vertex or end vertex or a pendant vertex, and the edge incident with that vertex is called a pendant edge. In the graph on the right, {3,5} is a pendant edge. This terminology is common in the study of trees in graph theory and especially trees as data structures .
1. A leaf vertex or pendant vertex (especially in a tree) is a vertex whose degree is 1. A leaf edge or pendant edge is the edge connecting a leaf vertex to its single neighbour. 2. A leaf power of a tree is a graph whose vertices are the leaves of the tree and whose edges connect leaves whose distance in the tree is at most a given threshold.
In the mathematical field of graph theory, a Hamiltonian path (or traceable path) is a path in an undirected or directed graph that visits each vertex exactly once. A Hamiltonian cycle (or Hamiltonian circuit) is a cycle that visits each vertex exactly once. A Hamiltonian path that starts and ends at adjacent vertices can be completed by adding ...
A graph with three vertices and three edges. A graph (sometimes called an undirected graph to distinguish it from a directed graph, or a simple graph to distinguish it from a multigraph) [4] [5] is a pair G = (V, E), where V is a set whose elements are called vertices (singular: vertex), and E is a set of unordered pairs {,} of vertices, whose elements are called edges (sometimes links or lines).
To give examples, for m > 0, consider a chain of m diamond graphs such that the consecutive diamonds share vertices of degree two. For k ≥ 3, add pendant edges at every vertex of degree 2 or 4 to get one of the families of minimal forbidden subgraphs of Naik, Rao, Shrikhande, and Singhi [11] as shown here. This does not rule out either the ...
For example, Kuratowski's Theorem states: A graph is planar if it contains as a subdivision neither the complete bipartite graph K 3,3 nor the complete graph K 5. Another problem in subdivision containment is the Kelmans–Seymour conjecture: Every 5-vertex-connected graph that is not planar contains a subdivision of the 5-vertex complete graph ...