Search results
Results From The WOW.Com Content Network
Rules of inference are syntactical transform rules which one can use to infer a conclusion from a premise to create an argument. A set of rules can be used to infer ...
But a rule of inference's action is purely syntactic, and does not need to preserve any semantic property: any function from sets of formulae to formulae counts as a rule of inference. Usually only rules that are recursive are important; i.e. rules such that there is an effective procedure for determining whether any given formula is the ...
Pages in category "Rules of inference" The following 43 pages are in this category, out of 43 total. This list may not reflect recent changes. ...
Enderton, for example, observes that "modus ponens can produce shorter formulas from longer ones", [9] and Russell observes that "the process of the inference cannot be reduced to symbols. Its sole record is the occurrence of ⊦q [the consequent] ... an inference is the dropping of a true premise; it is the dissolution of an implication". [10]
De Morgan's laws represented with Venn diagrams.In each case, the resultant set is the set of all points in any shade of blue. In propositional logic and Boolean algebra, De Morgan's laws, [1] [2] [3] also known as De Morgan's theorem, [4] are a pair of transformation rules that are both valid rules of inference.
Disjunction introduction or addition (also called or introduction) [1] [2] [3] is a rule of inference of propositional logic and almost every other deduction system. The rule makes it possible to introduce disjunctions to logical proofs. It is the inference that if P is true, then P or Q must be true. An example in English: Socrates is a man.
Through the rules of probability, the probability of a conclusion and of alternatives can be calculated. The best explanation is most often identified with the most probable (see Bayesian decision theory). A central rule of Bayesian inference is Bayes' theorem.
In predicate logic, existential generalization [1] [2] (also known as existential introduction, ∃I) is a valid rule of inference that allows one to move from a specific statement, or one instance, to a quantified generalized statement, or existential proposition.