When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Modulus and characteristic of convexity - Wikipedia

    en.wikipedia.org/wiki/Modulus_and_characteristic...

    In mathematics, the modulus of convexity and the characteristic of convexity are measures of "how convex" the unit ball in a Banach space is. In some sense, the modulus of convexity has the same relationship to the ε-δ definition of uniform convexity as the modulus of continuity does to the ε-δ definition of continuity.

  3. Convex analysis - Wikipedia

    en.wikipedia.org/wiki/Convex_analysis

    The epigraphs of extended real-valued functions play a role in convex analysis that is analogous to the role played by graphs of real-valued function in real analysis. Specifically, the epigraph of an extended real-valued function provides geometric intuition that can be used to help formula or prove conjectures.

  4. Convex function - Wikipedia

    en.wikipedia.org/wiki/Convex_function

    This characterization of convexity is quite useful to prove the following results. A convex function of one real variable defined on some open interval is continuous on . admits left and right derivatives, and these are monotonically non-decreasing. In addition, the left derivative is left-continuous and the right-derivative is right-continuous.

  5. Convexity (algebraic geometry) - Wikipedia

    en.wikipedia.org/wiki/Convexity_(algebraic_geometry)

    In algebraic geometry, convexity is a restrictive technical condition for algebraic varieties originally introduced to analyze Kontsevich moduli spaces ¯, (,) in quantum cohomology. [ 1 ] : §1 [ 2 ] [ 3 ] These moduli spaces are smooth orbifolds whenever the target space is convex.

  6. List of convexity topics - Wikipedia

    en.wikipedia.org/wiki/List_of_convexity_topics

    Convex conjugate - a dual of a real functional in a vector space. Can be interpreted as an encoding of the convex hull of the function's epigraph in terms of its supporting hyperplanes. Convex curve - a plane curve that lies entirely on one side of each of its supporting lines. The interior of a closed convex curve is a convex set.

  7. Convex measure - Wikipedia

    en.wikipedia.org/wiki/Convex_measure

    Thus, the collection of −∞-convex measures is the largest such class, whereas the 0-convex measures (the logarithmically concave measures) are the smallest class. The convexity of a measure μ on n-dimensional Euclidean space R n in the sense above is closely related to the convexity of its probability density function. [2]

  8. Jensen's inequality - Wikipedia

    en.wikipedia.org/wiki/Jensen's_inequality

    Jensen's inequality generalizes the statement that a secant line of a convex function lies above its graph. Visualizing convexity and Jensen's inequality. In mathematics, Jensen's inequality, named after the Danish mathematician Johan Jensen, relates the value of a convex function of an integral to the integral of the convex function.

  9. Convex geometry - Wikipedia

    en.wikipedia.org/wiki/Convex_geometry

    Convex geometry is a relatively young mathematical discipline. Although the first known contributions to convex geometry date back to antiquity and can be traced in the works of Euclid and Archimedes, it became an independent branch of mathematics at the turn of the 20th century, mainly due to the works of Hermann Brunn and Hermann Minkowski in dimensions two and three.