When.com Web Search

  1. Ad

    related to: ferrite vs austenite martensite ring

Search results

  1. Results From The WOW.Com Content Network
  2. Austenite - Wikipedia

    en.wikipedia.org/wiki/Austenite

    The metal is heated into the austenite region of the iron-cementite phase diagram and then quenched in a salt bath or other heat extraction medium that is between temperatures of 300–375 °C (572–707 °F). The metal is annealed in this temperature range until the austenite turns to bainite or ausferrite (bainitic ferrite + high-carbon ...

  3. Martensite - Wikipedia

    en.wikipedia.org/wiki/Martensite

    Martensite has a lower density than austenite, so that the martensitic transformation results in a relative change of volume. [4] Of considerably greater importance than the volume change is the shear strain, which has a magnitude of about 0.26 and which determines the shape of the plates of martensite. [5]

  4. Widmanstätten pattern - Wikipedia

    en.wikipedia.org/wiki/Widmanstätten_pattern

    The structures form due to the precipitation of a single crystal phase into two separate phases. In this way, the Widmanstätten transformation differs from other transformations, such as a martensite or ferrite transformation. The structures form at very precise angles, which may vary depending on the arrangement of the crystal lattices.

  5. Duplex stainless steel - Wikipedia

    en.wikipedia.org/wiki/Duplex_Stainless_Steel

    The main differences in composition, when compared with austenitic stainless steel is that duplex steels have a higher chromium content, 20–28%; higher molybdenum, up to 5%; lower nickel, up to 9% and 0.05–0.50% nitrogen. Both the low nickel content and the high strength (enabling thinner sections to be used) give significant cost benefits.

  6. Allotropes of iron - Wikipedia

    en.wikipedia.org/wiki/Allotropes_of_iron

    At atmospheric pressure, three allotropic forms of iron exist, depending on temperature: alpha iron (α-Fe, ferrite), gamma iron (γ-Fe, austenite), and delta iron (δ-Fe). At very high pressure, a fourth form exists, epsilon iron (ε-Fe, hexaferrum). Some controversial experimental evidence suggests the existence of a fifth high-pressure form ...

  7. Ferritic stainless steel - Wikipedia

    en.wikipedia.org/wiki/Ferritic_stainless_steel

    The iron-chromium phase diagram shows that up to about 13% Cr, the steel undergoes successive transformations upon cooling from the liquid phase from ferritic α phase to austenitic γ phase and back to α. When some carbon is present, and if cooling occurs quickly, some of the austenite will transform into martensite.

  8. Thermomechanical processing - Wikipedia

    en.wikipedia.org/wiki/Thermomechanical_processing

    When the cut ends of TMT bars are etched in Nital (a mixture of nitric acid and methanol), three distinct rings appear: 1. A tempered outer ring of martensite, 2. A semi-tempered middle ring of martensite and bainite, and 3. a mild circular core of bainite, ferrite and pearlite. This is the desired micro structure for quality construction rebar.

  9. Alloy steel - Wikipedia

    en.wikipedia.org/wiki/Alloy_steel

    At the atomic level, the four phases of auto steel include martensite (the hardest yet most brittle), bainite (less hard), ferrite (more ductile), and austenite (the most ductile). The phases are arranged by steelmakers by manipulating intervals (sometimes by seconds only) and temperatures of the heating and cooling process.