Ad
related to: number sequences calculator with solution
Search results
Results From The WOW.Com Content Network
A number that has the same number of digits as the number of digits in its prime factorization, including exponents but excluding exponents equal to 1. A046758: Extravagant numbers: 4, 6, 8, 9, 12, 18, 20, 22, 24, 26, 28, 30, 33, 34, 36, 38, ... A number that has fewer digits than the number of digits in its prime factorization (including ...
This sequence of numbers of parents is the Fibonacci sequence. The number of ancestors at each level, F n, is the number of female ancestors, which is F n−1, plus the number of male ancestors, which is F n−2. [90] [91] This is under the unrealistic assumption that the ancestors at each level are otherwise unrelated.
In words: the first two numbers in the sequence are both 2, and each successive number is formed by adding twice the previous Pell–Lucas number to the Pell–Lucas number before that, or equivalently, by adding the next Pell number to the previous Pell number: thus, 82 is the companion to 29, and 82 = 2 × 34 + 14 = 70 + 12.
The look-and-say sequence is also popularly known as the Morris Number Sequence, after cryptographer Robert Morris, and the puzzle "What is the next number in the sequence 1, 11, 21, 1211, 111221?" is sometimes referred to as the Cuckoo's Egg , from a description of Morris in Clifford Stoll 's book The Cuckoo's Egg .
An integer sequence is computable if there exists an algorithm that, given n, calculates a n, for all n > 0. The set of computable integer sequences is countable.The set of all integer sequences is uncountable (with cardinality equal to that of the continuum), and so not all integer sequences are computable.
This fact can also be applied to finite series of rational functions, allowing the result to be computed in constant time even when the series contains a large number of terms. Exponential function [ edit ]
The Padovan sequence numbers can be written in terms of powers of the roots of the equation [1] x 3 − x − 1 = 0. {\displaystyle x^{3}-x-1=0.\,} This equation has 3 roots; one real root p (known as the plastic ratio ) and two complex conjugate roots q and r . [ 5 ]
For generalized Fibonacci sequences (satisfying the same recurrence relation, but with other initial values, e.g. the Lucas numbers) the number of occurrences of 0 per cycle is 0, 1, 2, or 4. The ratio of the Pisano period of n and the number of zeros modulo n in the cycle gives the rank of apparition or Fibonacci entry point of n .